A parametric representation of totally mixed Nash equilibria

We present an algorithm to compute a parametric description of the totally mixed Nash equilibria of a generic game in normal form with a fixed structure. Using this representation, we also show an algorithm to compute polynomial inequality conditions under which a game has the maximum possible numbe...

Descripción completa

Detalles Bibliográficos
Autores principales: Jeronimo, Gabriela Tali, Perrucci, Daniel, Sabia, Juan Vicente Rafael
Publicado: 2009
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08981221_v58_n6_p1126_Jeronimo
http://hdl.handle.net/20.500.12110/paper_08981221_v58_n6_p1126_Jeronimo
Aporte de:
id paper:paper_08981221_v58_n6_p1126_Jeronimo
record_format dspace
spelling paper:paper_08981221_v58_n6_p1126_Jeronimo2023-06-08T15:49:24Z A parametric representation of totally mixed Nash equilibria Jeronimo, Gabriela Tali Perrucci, Daniel Sabia, Juan Vicente Rafael Complexity Multihomogeneous resultants Nash equilibria Noncooperative game theory Polynomial equation solving Complexity Multihomogeneous resultants Nash equilibria Noncooperative game theory Polynomial equation solving Polynomials Game theory We present an algorithm to compute a parametric description of the totally mixed Nash equilibria of a generic game in normal form with a fixed structure. Using this representation, we also show an algorithm to compute polynomial inequality conditions under which a game has the maximum possible number of this kind of equilibria. Then, we present symbolic procedures to describe the set of isolated totally mixed Nash equilibria of an arbitrary game and to compute, under certain general assumptions, the exact number of these equilibria. The complexity of all these algorithms is polynomial in the number of players, the number of each player's strategies and the generic number of totally mixed Nash equilibria of a game with the considered structure. © 2009 Elsevier Ltd. All rights reserved. Fil:Jeronimo, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Perrucci, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Sabia, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2009 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08981221_v58_n6_p1126_Jeronimo http://hdl.handle.net/20.500.12110/paper_08981221_v58_n6_p1126_Jeronimo
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Complexity
Multihomogeneous resultants
Nash equilibria
Noncooperative game theory
Polynomial equation solving
Complexity
Multihomogeneous resultants
Nash equilibria
Noncooperative game theory
Polynomial equation solving
Polynomials
Game theory
spellingShingle Complexity
Multihomogeneous resultants
Nash equilibria
Noncooperative game theory
Polynomial equation solving
Complexity
Multihomogeneous resultants
Nash equilibria
Noncooperative game theory
Polynomial equation solving
Polynomials
Game theory
Jeronimo, Gabriela Tali
Perrucci, Daniel
Sabia, Juan Vicente Rafael
A parametric representation of totally mixed Nash equilibria
topic_facet Complexity
Multihomogeneous resultants
Nash equilibria
Noncooperative game theory
Polynomial equation solving
Complexity
Multihomogeneous resultants
Nash equilibria
Noncooperative game theory
Polynomial equation solving
Polynomials
Game theory
description We present an algorithm to compute a parametric description of the totally mixed Nash equilibria of a generic game in normal form with a fixed structure. Using this representation, we also show an algorithm to compute polynomial inequality conditions under which a game has the maximum possible number of this kind of equilibria. Then, we present symbolic procedures to describe the set of isolated totally mixed Nash equilibria of an arbitrary game and to compute, under certain general assumptions, the exact number of these equilibria. The complexity of all these algorithms is polynomial in the number of players, the number of each player's strategies and the generic number of totally mixed Nash equilibria of a game with the considered structure. © 2009 Elsevier Ltd. All rights reserved.
author Jeronimo, Gabriela Tali
Perrucci, Daniel
Sabia, Juan Vicente Rafael
author_facet Jeronimo, Gabriela Tali
Perrucci, Daniel
Sabia, Juan Vicente Rafael
author_sort Jeronimo, Gabriela Tali
title A parametric representation of totally mixed Nash equilibria
title_short A parametric representation of totally mixed Nash equilibria
title_full A parametric representation of totally mixed Nash equilibria
title_fullStr A parametric representation of totally mixed Nash equilibria
title_full_unstemmed A parametric representation of totally mixed Nash equilibria
title_sort parametric representation of totally mixed nash equilibria
publishDate 2009
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08981221_v58_n6_p1126_Jeronimo
http://hdl.handle.net/20.500.12110/paper_08981221_v58_n6_p1126_Jeronimo
work_keys_str_mv AT jeronimogabrielatali aparametricrepresentationoftotallymixednashequilibria
AT perruccidaniel aparametricrepresentationoftotallymixednashequilibria
AT sabiajuanvicenterafael aparametricrepresentationoftotallymixednashequilibria
AT jeronimogabrielatali parametricrepresentationoftotallymixednashequilibria
AT perruccidaniel parametricrepresentationoftotallymixednashequilibria
AT sabiajuanvicenterafael parametricrepresentationoftotallymixednashequilibria
_version_ 1768543475442122752