A parametric representation of totally mixed Nash equilibria
We present an algorithm to compute a parametric description of the totally mixed Nash equilibria of a generic game in normal form with a fixed structure. Using this representation, we also show an algorithm to compute polynomial inequality conditions under which a game has the maximum possible numbe...
Autores principales: | , , |
---|---|
Publicado: |
2009
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08981221_v58_n6_p1126_Jeronimo http://hdl.handle.net/20.500.12110/paper_08981221_v58_n6_p1126_Jeronimo |
Aporte de: |
id |
paper:paper_08981221_v58_n6_p1126_Jeronimo |
---|---|
record_format |
dspace |
spelling |
paper:paper_08981221_v58_n6_p1126_Jeronimo2023-06-08T15:49:24Z A parametric representation of totally mixed Nash equilibria Jeronimo, Gabriela Tali Perrucci, Daniel Sabia, Juan Vicente Rafael Complexity Multihomogeneous resultants Nash equilibria Noncooperative game theory Polynomial equation solving Complexity Multihomogeneous resultants Nash equilibria Noncooperative game theory Polynomial equation solving Polynomials Game theory We present an algorithm to compute a parametric description of the totally mixed Nash equilibria of a generic game in normal form with a fixed structure. Using this representation, we also show an algorithm to compute polynomial inequality conditions under which a game has the maximum possible number of this kind of equilibria. Then, we present symbolic procedures to describe the set of isolated totally mixed Nash equilibria of an arbitrary game and to compute, under certain general assumptions, the exact number of these equilibria. The complexity of all these algorithms is polynomial in the number of players, the number of each player's strategies and the generic number of totally mixed Nash equilibria of a game with the considered structure. © 2009 Elsevier Ltd. All rights reserved. Fil:Jeronimo, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Perrucci, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Sabia, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2009 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08981221_v58_n6_p1126_Jeronimo http://hdl.handle.net/20.500.12110/paper_08981221_v58_n6_p1126_Jeronimo |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Complexity Multihomogeneous resultants Nash equilibria Noncooperative game theory Polynomial equation solving Complexity Multihomogeneous resultants Nash equilibria Noncooperative game theory Polynomial equation solving Polynomials Game theory |
spellingShingle |
Complexity Multihomogeneous resultants Nash equilibria Noncooperative game theory Polynomial equation solving Complexity Multihomogeneous resultants Nash equilibria Noncooperative game theory Polynomial equation solving Polynomials Game theory Jeronimo, Gabriela Tali Perrucci, Daniel Sabia, Juan Vicente Rafael A parametric representation of totally mixed Nash equilibria |
topic_facet |
Complexity Multihomogeneous resultants Nash equilibria Noncooperative game theory Polynomial equation solving Complexity Multihomogeneous resultants Nash equilibria Noncooperative game theory Polynomial equation solving Polynomials Game theory |
description |
We present an algorithm to compute a parametric description of the totally mixed Nash equilibria of a generic game in normal form with a fixed structure. Using this representation, we also show an algorithm to compute polynomial inequality conditions under which a game has the maximum possible number of this kind of equilibria. Then, we present symbolic procedures to describe the set of isolated totally mixed Nash equilibria of an arbitrary game and to compute, under certain general assumptions, the exact number of these equilibria. The complexity of all these algorithms is polynomial in the number of players, the number of each player's strategies and the generic number of totally mixed Nash equilibria of a game with the considered structure. © 2009 Elsevier Ltd. All rights reserved. |
author |
Jeronimo, Gabriela Tali Perrucci, Daniel Sabia, Juan Vicente Rafael |
author_facet |
Jeronimo, Gabriela Tali Perrucci, Daniel Sabia, Juan Vicente Rafael |
author_sort |
Jeronimo, Gabriela Tali |
title |
A parametric representation of totally mixed Nash equilibria |
title_short |
A parametric representation of totally mixed Nash equilibria |
title_full |
A parametric representation of totally mixed Nash equilibria |
title_fullStr |
A parametric representation of totally mixed Nash equilibria |
title_full_unstemmed |
A parametric representation of totally mixed Nash equilibria |
title_sort |
parametric representation of totally mixed nash equilibria |
publishDate |
2009 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08981221_v58_n6_p1126_Jeronimo http://hdl.handle.net/20.500.12110/paper_08981221_v58_n6_p1126_Jeronimo |
work_keys_str_mv |
AT jeronimogabrielatali aparametricrepresentationoftotallymixednashequilibria AT perruccidaniel aparametricrepresentationoftotallymixednashequilibria AT sabiajuanvicenterafael aparametricrepresentationoftotallymixednashequilibria AT jeronimogabrielatali parametricrepresentationoftotallymixednashequilibria AT perruccidaniel parametricrepresentationoftotallymixednashequilibria AT sabiajuanvicenterafael parametricrepresentationoftotallymixednashequilibria |
_version_ |
1768543475442122752 |