How to scale the wave functions in a simple solvable model

The scaling properties of the exact wave functions in the two-level pairing model are studied and a well-defined limit, when the number of pairs goes to infinity, is found. An approximate method for obtaining the scaled wave functions is discussed. Well-known methods for relating finite-difference e...

Descripción completa

Detalles Bibliográficos
Autores principales: Cambiaggio de Questa, María Cristina, Sánchez, Laura Mabel, Dussel, Guillermo Gaspar
Publicado: 1997
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_05562813_v56_n5_p2508_Cambiaggio
http://hdl.handle.net/20.500.12110/paper_05562813_v56_n5_p2508_Cambiaggio
Aporte de:
id paper:paper_05562813_v56_n5_p2508_Cambiaggio
record_format dspace
spelling paper:paper_05562813_v56_n5_p2508_Cambiaggio2023-06-08T15:41:44Z How to scale the wave functions in a simple solvable model Cambiaggio de Questa, María Cristina Sánchez, Laura Mabel Dussel, Guillermo Gaspar The scaling properties of the exact wave functions in the two-level pairing model are studied and a well-defined limit, when the number of pairs goes to infinity, is found. An approximate method for obtaining the scaled wave functions is discussed. Well-known methods for relating finite-difference equations with differential ones are used, together with a semiclassical expansion. The approximate results obtained agree well with the exact ones. A comparison with the time-dependent Hartree-Fock approach is also done. © 1997 The American Physical Society. Fil:Cambiaggio, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Sanchez, L.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Dussel, G.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 1997 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_05562813_v56_n5_p2508_Cambiaggio http://hdl.handle.net/20.500.12110/paper_05562813_v56_n5_p2508_Cambiaggio
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description The scaling properties of the exact wave functions in the two-level pairing model are studied and a well-defined limit, when the number of pairs goes to infinity, is found. An approximate method for obtaining the scaled wave functions is discussed. Well-known methods for relating finite-difference equations with differential ones are used, together with a semiclassical expansion. The approximate results obtained agree well with the exact ones. A comparison with the time-dependent Hartree-Fock approach is also done. © 1997 The American Physical Society.
author Cambiaggio de Questa, María Cristina
Sánchez, Laura Mabel
Dussel, Guillermo Gaspar
spellingShingle Cambiaggio de Questa, María Cristina
Sánchez, Laura Mabel
Dussel, Guillermo Gaspar
How to scale the wave functions in a simple solvable model
author_facet Cambiaggio de Questa, María Cristina
Sánchez, Laura Mabel
Dussel, Guillermo Gaspar
author_sort Cambiaggio de Questa, María Cristina
title How to scale the wave functions in a simple solvable model
title_short How to scale the wave functions in a simple solvable model
title_full How to scale the wave functions in a simple solvable model
title_fullStr How to scale the wave functions in a simple solvable model
title_full_unstemmed How to scale the wave functions in a simple solvable model
title_sort how to scale the wave functions in a simple solvable model
publishDate 1997
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_05562813_v56_n5_p2508_Cambiaggio
http://hdl.handle.net/20.500.12110/paper_05562813_v56_n5_p2508_Cambiaggio
work_keys_str_mv AT cambiaggiodequestamariacristina howtoscalethewavefunctionsinasimplesolvablemodel
AT sanchezlauramabel howtoscalethewavefunctionsinasimplesolvablemodel
AT dusselguillermogaspar howtoscalethewavefunctionsinasimplesolvablemodel
_version_ 1768545513160835072