Generalized statistical complexity measures: Geometrical and analytical properties

We discuss bounds on the values adopted by the generalized statistical complexity measures [M.T. Martin et al., Phys. Lett. A 311 (2003) 126; P.W. Lamberti et al., Physica A 334 (2004) 119] introduced by López Ruiz et al. [Phys. Lett. A 209 (1995) 321] and Shiner et al. [Phys. Rev. E 59 (1999) 1459]...

Descripción completa

Guardado en:
Detalles Bibliográficos
Publicado: 2006
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03784371_v369_n2_p439_Martin
http://hdl.handle.net/20.500.12110/paper_03784371_v369_n2_p439_Martin
Aporte de:
id paper:paper_03784371_v369_n2_p439_Martin
record_format dspace
spelling paper:paper_03784371_v369_n2_p439_Martin2023-06-08T15:40:07Z Generalized statistical complexity measures: Geometrical and analytical properties Disequilibrium Distances in probability space Dynamical systems Entropy Statistical complexity Entropy Probabilistic logics Statistical methods Theorem proving Disequilibrium Distances in probability space Dynamical systems Statistical complexity Computational complexity We discuss bounds on the values adopted by the generalized statistical complexity measures [M.T. Martin et al., Phys. Lett. A 311 (2003) 126; P.W. Lamberti et al., Physica A 334 (2004) 119] introduced by López Ruiz et al. [Phys. Lett. A 209 (1995) 321] and Shiner et al. [Phys. Rev. E 59 (1999) 1459]. Several new theorems are proved and illustrated with reference to the celebrated logistic map. © 2006 Elsevier B.V. All rights reserved. 2006 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03784371_v369_n2_p439_Martin http://hdl.handle.net/20.500.12110/paper_03784371_v369_n2_p439_Martin
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Disequilibrium
Distances in probability space
Dynamical systems
Entropy
Statistical complexity
Entropy
Probabilistic logics
Statistical methods
Theorem proving
Disequilibrium
Distances in probability space
Dynamical systems
Statistical complexity
Computational complexity
spellingShingle Disequilibrium
Distances in probability space
Dynamical systems
Entropy
Statistical complexity
Entropy
Probabilistic logics
Statistical methods
Theorem proving
Disequilibrium
Distances in probability space
Dynamical systems
Statistical complexity
Computational complexity
Generalized statistical complexity measures: Geometrical and analytical properties
topic_facet Disequilibrium
Distances in probability space
Dynamical systems
Entropy
Statistical complexity
Entropy
Probabilistic logics
Statistical methods
Theorem proving
Disequilibrium
Distances in probability space
Dynamical systems
Statistical complexity
Computational complexity
description We discuss bounds on the values adopted by the generalized statistical complexity measures [M.T. Martin et al., Phys. Lett. A 311 (2003) 126; P.W. Lamberti et al., Physica A 334 (2004) 119] introduced by López Ruiz et al. [Phys. Lett. A 209 (1995) 321] and Shiner et al. [Phys. Rev. E 59 (1999) 1459]. Several new theorems are proved and illustrated with reference to the celebrated logistic map. © 2006 Elsevier B.V. All rights reserved.
title Generalized statistical complexity measures: Geometrical and analytical properties
title_short Generalized statistical complexity measures: Geometrical and analytical properties
title_full Generalized statistical complexity measures: Geometrical and analytical properties
title_fullStr Generalized statistical complexity measures: Geometrical and analytical properties
title_full_unstemmed Generalized statistical complexity measures: Geometrical and analytical properties
title_sort generalized statistical complexity measures: geometrical and analytical properties
publishDate 2006
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03784371_v369_n2_p439_Martin
http://hdl.handle.net/20.500.12110/paper_03784371_v369_n2_p439_Martin
_version_ 1768546631948435456