Robust nonparametric estimation with missing data

In this paper, under a nonparametric regression model, we introduce two families of robust procedures to estimate the regression function when missing data occur in the response. The first proposal is based on a local M-functional applied to the conditional distribution function estimate adapted to...

Descripción completa

Detalles Bibliográficos
Autor principal: Boente, Graciela Lina
Publicado: 2009
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03783758_v139_n2_p571_Boente
http://hdl.handle.net/20.500.12110/paper_03783758_v139_n2_p571_Boente
Aporte de:
id paper:paper_03783758_v139_n2_p571_Boente
record_format dspace
spelling paper:paper_03783758_v139_n2_p571_Boente2023-06-08T15:39:40Z Robust nonparametric estimation with missing data Boente, Graciela Lina Asymptotic properties Kernel weights Missing data Nonparametric regression Robust estimation In this paper, under a nonparametric regression model, we introduce two families of robust procedures to estimate the regression function when missing data occur in the response. The first proposal is based on a local M-functional applied to the conditional distribution function estimate adapted to the presence of missing data. The second proposal imputes the missing responses using the local M-smoother based on the observed sample and then estimates the regression function with the completed sample. We show that the robust procedures considered are consistent and asymptotically normally distributed. A robust procedure to select the smoothing parameter is also discussed. © 2008 Elsevier B.V. All rights reserved. Fil:Boente, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2009 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03783758_v139_n2_p571_Boente http://hdl.handle.net/20.500.12110/paper_03783758_v139_n2_p571_Boente
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Asymptotic properties
Kernel weights
Missing data
Nonparametric regression
Robust estimation
spellingShingle Asymptotic properties
Kernel weights
Missing data
Nonparametric regression
Robust estimation
Boente, Graciela Lina
Robust nonparametric estimation with missing data
topic_facet Asymptotic properties
Kernel weights
Missing data
Nonparametric regression
Robust estimation
description In this paper, under a nonparametric regression model, we introduce two families of robust procedures to estimate the regression function when missing data occur in the response. The first proposal is based on a local M-functional applied to the conditional distribution function estimate adapted to the presence of missing data. The second proposal imputes the missing responses using the local M-smoother based on the observed sample and then estimates the regression function with the completed sample. We show that the robust procedures considered are consistent and asymptotically normally distributed. A robust procedure to select the smoothing parameter is also discussed. © 2008 Elsevier B.V. All rights reserved.
author Boente, Graciela Lina
author_facet Boente, Graciela Lina
author_sort Boente, Graciela Lina
title Robust nonparametric estimation with missing data
title_short Robust nonparametric estimation with missing data
title_full Robust nonparametric estimation with missing data
title_fullStr Robust nonparametric estimation with missing data
title_full_unstemmed Robust nonparametric estimation with missing data
title_sort robust nonparametric estimation with missing data
publishDate 2009
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03783758_v139_n2_p571_Boente
http://hdl.handle.net/20.500.12110/paper_03783758_v139_n2_p571_Boente
work_keys_str_mv AT boentegracielalina robustnonparametricestimationwithmissingdata
_version_ 1768543231785566208