Damping of quantal collective motion in spherical nuclei: Dissipation versus diffusion

A quantal harmonic vibration in a spherical nucleus is assumed to couple to the nucleonic motion through a particle-phonon interaction. The dynamics of both the collective mode and the heat reservoir are analytically described and numerically solved in a range of physically significant interaction s...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: De la Mota, Virginia, Dorso, Claudio Oscar, Hernández, Ester Susana
Publicado: 1984
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03702693_v143_n4-6_p279_delaMota
http://hdl.handle.net/20.500.12110/paper_03702693_v143_n4-6_p279_delaMota
Aporte de:
id paper:paper_03702693_v143_n4-6_p279_delaMota
record_format dspace
spelling paper:paper_03702693_v143_n4-6_p279_delaMota2023-06-08T15:36:28Z Damping of quantal collective motion in spherical nuclei: Dissipation versus diffusion De la Mota, Virginia Dorso, Claudio Oscar Hernández, Ester Susana A quantal harmonic vibration in a spherical nucleus is assumed to couple to the nucleonic motion through a particle-phonon interaction. The dynamics of both the collective mode and the heat reservoir are analytically described and numerically solved in a range of physically significant interaction strength and duration. The competetion between diffusive and dissipative processes in the course of evolution towards equilibration is described. © 1984. Fil:de la Mota, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Dorso, C.O. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Hernández, E.S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 1984 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03702693_v143_n4-6_p279_delaMota http://hdl.handle.net/20.500.12110/paper_03702693_v143_n4-6_p279_delaMota
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description A quantal harmonic vibration in a spherical nucleus is assumed to couple to the nucleonic motion through a particle-phonon interaction. The dynamics of both the collective mode and the heat reservoir are analytically described and numerically solved in a range of physically significant interaction strength and duration. The competetion between diffusive and dissipative processes in the course of evolution towards equilibration is described. © 1984.
author De la Mota, Virginia
Dorso, Claudio Oscar
Hernández, Ester Susana
spellingShingle De la Mota, Virginia
Dorso, Claudio Oscar
Hernández, Ester Susana
Damping of quantal collective motion in spherical nuclei: Dissipation versus diffusion
author_facet De la Mota, Virginia
Dorso, Claudio Oscar
Hernández, Ester Susana
author_sort De la Mota, Virginia
title Damping of quantal collective motion in spherical nuclei: Dissipation versus diffusion
title_short Damping of quantal collective motion in spherical nuclei: Dissipation versus diffusion
title_full Damping of quantal collective motion in spherical nuclei: Dissipation versus diffusion
title_fullStr Damping of quantal collective motion in spherical nuclei: Dissipation versus diffusion
title_full_unstemmed Damping of quantal collective motion in spherical nuclei: Dissipation versus diffusion
title_sort damping of quantal collective motion in spherical nuclei: dissipation versus diffusion
publishDate 1984
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03702693_v143_n4-6_p279_delaMota
http://hdl.handle.net/20.500.12110/paper_03702693_v143_n4-6_p279_delaMota
work_keys_str_mv AT delamotavirginia dampingofquantalcollectivemotioninsphericalnucleidissipationversusdiffusion
AT dorsoclaudiooscar dampingofquantalcollectivemotioninsphericalnucleidissipationversusdiffusion
AT hernandezestersusana dampingofquantalcollectivemotioninsphericalnucleidissipationversusdiffusion
_version_ 1768545466636566528