Multiple solutions for the p-Laplace operator with critical growth
In this paper we show the existence of at least three nontrivial solutions to the following quasilinear elliptic equation - Δp u = | u |p* - 2 u + λ f (x, u) in a smooth bounded domain Ω of RN with homogeneous Dirichlet boundary conditions on ∂ Ω, where p* = N p / (N - p) is the critical Sobolev exp...
Autores principales: | , |
---|---|
Publicado: |
2009
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0362546X_v71_n12_p6283_DeNapoli http://hdl.handle.net/20.500.12110/paper_0362546X_v71_n12_p6283_DeNapoli |
Aporte de: |
id |
paper:paper_0362546X_v71_n12_p6283_DeNapoli |
---|---|
record_format |
dspace |
spelling |
paper:paper_0362546X_v71_n12_p6283_DeNapoli2023-06-08T15:35:23Z Multiple solutions for the p-Laplace operator with critical growth De Napoli, Pablo Luis Silva, Analia Concepcion Critical growth p-Laplace equations Variational methods Bounded domain Critical growth Critical Sobolev exponent Dirichlet boundary condition Multiple solutions Nontrivial solution P-Laplace equations P-Laplace operator P-Laplacian Quasilinear elliptic equations Variational methods Laplace transforms Mathematical operators Nonlinear equations Laplace equation In this paper we show the existence of at least three nontrivial solutions to the following quasilinear elliptic equation - Δp u = | u |p* - 2 u + λ f (x, u) in a smooth bounded domain Ω of RN with homogeneous Dirichlet boundary conditions on ∂ Ω, where p* = N p / (N - p) is the critical Sobolev exponent and Δp u = div (| ∇ u |p - 2 ∇ u) is the p-Laplacian. The proof is based on variational arguments and the classical concentration compactness method. © 2009 Elsevier Ltd. All rights reserved. Fil:De Nápoli, P.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Silva, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2009 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0362546X_v71_n12_p6283_DeNapoli http://hdl.handle.net/20.500.12110/paper_0362546X_v71_n12_p6283_DeNapoli |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Critical growth p-Laplace equations Variational methods Bounded domain Critical growth Critical Sobolev exponent Dirichlet boundary condition Multiple solutions Nontrivial solution P-Laplace equations P-Laplace operator P-Laplacian Quasilinear elliptic equations Variational methods Laplace transforms Mathematical operators Nonlinear equations Laplace equation |
spellingShingle |
Critical growth p-Laplace equations Variational methods Bounded domain Critical growth Critical Sobolev exponent Dirichlet boundary condition Multiple solutions Nontrivial solution P-Laplace equations P-Laplace operator P-Laplacian Quasilinear elliptic equations Variational methods Laplace transforms Mathematical operators Nonlinear equations Laplace equation De Napoli, Pablo Luis Silva, Analia Concepcion Multiple solutions for the p-Laplace operator with critical growth |
topic_facet |
Critical growth p-Laplace equations Variational methods Bounded domain Critical growth Critical Sobolev exponent Dirichlet boundary condition Multiple solutions Nontrivial solution P-Laplace equations P-Laplace operator P-Laplacian Quasilinear elliptic equations Variational methods Laplace transforms Mathematical operators Nonlinear equations Laplace equation |
description |
In this paper we show the existence of at least three nontrivial solutions to the following quasilinear elliptic equation - Δp u = | u |p* - 2 u + λ f (x, u) in a smooth bounded domain Ω of RN with homogeneous Dirichlet boundary conditions on ∂ Ω, where p* = N p / (N - p) is the critical Sobolev exponent and Δp u = div (| ∇ u |p - 2 ∇ u) is the p-Laplacian. The proof is based on variational arguments and the classical concentration compactness method. © 2009 Elsevier Ltd. All rights reserved. |
author |
De Napoli, Pablo Luis Silva, Analia Concepcion |
author_facet |
De Napoli, Pablo Luis Silva, Analia Concepcion |
author_sort |
De Napoli, Pablo Luis |
title |
Multiple solutions for the p-Laplace operator with critical growth |
title_short |
Multiple solutions for the p-Laplace operator with critical growth |
title_full |
Multiple solutions for the p-Laplace operator with critical growth |
title_fullStr |
Multiple solutions for the p-Laplace operator with critical growth |
title_full_unstemmed |
Multiple solutions for the p-Laplace operator with critical growth |
title_sort |
multiple solutions for the p-laplace operator with critical growth |
publishDate |
2009 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0362546X_v71_n12_p6283_DeNapoli http://hdl.handle.net/20.500.12110/paper_0362546X_v71_n12_p6283_DeNapoli |
work_keys_str_mv |
AT denapolipabloluis multiplesolutionsfortheplaplaceoperatorwithcriticalgrowth AT silvaanaliaconcepcion multiplesolutionsfortheplaplaceoperatorwithcriticalgrowth |
_version_ |
1768545190567477248 |