Multiple solutions for the p-Laplace operator with critical growth

In this paper we show the existence of at least three nontrivial solutions to the following quasilinear elliptic equation - Δp u = | u |p* - 2 u + λ f (x, u) in a smooth bounded domain Ω of RN with homogeneous Dirichlet boundary conditions on ∂ Ω, where p* = N p / (N - p) is the critical Sobolev exp...

Descripción completa

Detalles Bibliográficos
Autores principales: De Napoli, Pablo Luis, Silva, Analia Concepcion
Publicado: 2009
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0362546X_v71_n12_p6283_DeNapoli
http://hdl.handle.net/20.500.12110/paper_0362546X_v71_n12_p6283_DeNapoli
Aporte de:
id paper:paper_0362546X_v71_n12_p6283_DeNapoli
record_format dspace
spelling paper:paper_0362546X_v71_n12_p6283_DeNapoli2023-06-08T15:35:23Z Multiple solutions for the p-Laplace operator with critical growth De Napoli, Pablo Luis Silva, Analia Concepcion Critical growth p-Laplace equations Variational methods Bounded domain Critical growth Critical Sobolev exponent Dirichlet boundary condition Multiple solutions Nontrivial solution P-Laplace equations P-Laplace operator P-Laplacian Quasilinear elliptic equations Variational methods Laplace transforms Mathematical operators Nonlinear equations Laplace equation In this paper we show the existence of at least three nontrivial solutions to the following quasilinear elliptic equation - Δp u = | u |p* - 2 u + λ f (x, u) in a smooth bounded domain Ω of RN with homogeneous Dirichlet boundary conditions on ∂ Ω, where p* = N p / (N - p) is the critical Sobolev exponent and Δp u = div (| ∇ u |p - 2 ∇ u) is the p-Laplacian. The proof is based on variational arguments and the classical concentration compactness method. © 2009 Elsevier Ltd. All rights reserved. Fil:De Nápoli, P.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Silva, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2009 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0362546X_v71_n12_p6283_DeNapoli http://hdl.handle.net/20.500.12110/paper_0362546X_v71_n12_p6283_DeNapoli
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Critical growth
p-Laplace equations
Variational methods
Bounded domain
Critical growth
Critical Sobolev exponent
Dirichlet boundary condition
Multiple solutions
Nontrivial solution
P-Laplace equations
P-Laplace operator
P-Laplacian
Quasilinear elliptic equations
Variational methods
Laplace transforms
Mathematical operators
Nonlinear equations
Laplace equation
spellingShingle Critical growth
p-Laplace equations
Variational methods
Bounded domain
Critical growth
Critical Sobolev exponent
Dirichlet boundary condition
Multiple solutions
Nontrivial solution
P-Laplace equations
P-Laplace operator
P-Laplacian
Quasilinear elliptic equations
Variational methods
Laplace transforms
Mathematical operators
Nonlinear equations
Laplace equation
De Napoli, Pablo Luis
Silva, Analia Concepcion
Multiple solutions for the p-Laplace operator with critical growth
topic_facet Critical growth
p-Laplace equations
Variational methods
Bounded domain
Critical growth
Critical Sobolev exponent
Dirichlet boundary condition
Multiple solutions
Nontrivial solution
P-Laplace equations
P-Laplace operator
P-Laplacian
Quasilinear elliptic equations
Variational methods
Laplace transforms
Mathematical operators
Nonlinear equations
Laplace equation
description In this paper we show the existence of at least three nontrivial solutions to the following quasilinear elliptic equation - Δp u = | u |p* - 2 u + λ f (x, u) in a smooth bounded domain Ω of RN with homogeneous Dirichlet boundary conditions on ∂ Ω, where p* = N p / (N - p) is the critical Sobolev exponent and Δp u = div (| ∇ u |p - 2 ∇ u) is the p-Laplacian. The proof is based on variational arguments and the classical concentration compactness method. © 2009 Elsevier Ltd. All rights reserved.
author De Napoli, Pablo Luis
Silva, Analia Concepcion
author_facet De Napoli, Pablo Luis
Silva, Analia Concepcion
author_sort De Napoli, Pablo Luis
title Multiple solutions for the p-Laplace operator with critical growth
title_short Multiple solutions for the p-Laplace operator with critical growth
title_full Multiple solutions for the p-Laplace operator with critical growth
title_fullStr Multiple solutions for the p-Laplace operator with critical growth
title_full_unstemmed Multiple solutions for the p-Laplace operator with critical growth
title_sort multiple solutions for the p-laplace operator with critical growth
publishDate 2009
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0362546X_v71_n12_p6283_DeNapoli
http://hdl.handle.net/20.500.12110/paper_0362546X_v71_n12_p6283_DeNapoli
work_keys_str_mv AT denapolipabloluis multiplesolutionsfortheplaplaceoperatorwithcriticalgrowth
AT silvaanaliaconcepcion multiplesolutionsfortheplaplaceoperatorwithcriticalgrowth
_version_ 1768545190567477248