On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass

We extend the existing theory on large-time asymptotics for convection-diffusion equations, based on the entropy-entropy dissipation approach, to certain fast diffusion equations with uniformly convex confinement potential and finite-mass but infinite-entropy equilibrium solutions. We prove existenc...

Descripción completa

Detalles Bibliográficos
Publicado: 2003
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03605302_v28_n1-2_p301_Lederman
http://hdl.handle.net/20.500.12110/paper_03605302_v28_n1-2_p301_Lederman
Aporte de:
id paper:paper_03605302_v28_n1-2_p301_Lederman
record_format dspace
spelling paper:paper_03605302_v28_n1-2_p301_Lederman2023-06-08T15:34:47Z On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass We extend the existing theory on large-time asymptotics for convection-diffusion equations, based on the entropy-entropy dissipation approach, to certain fast diffusion equations with uniformly convex confinement potential and finite-mass but infinite-entropy equilibrium solutions. We prove existence of a mass preserving solution of the Cauchy problem and we show exponential convergence, as t → ∞, at a precise rate to the corresponding equilibrium solution in the L1 norm. As by-product we also derive corresponding generalized Sobolev inequalities. 2003 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03605302_v28_n1-2_p301_Lederman http://hdl.handle.net/20.500.12110/paper_03605302_v28_n1-2_p301_Lederman
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description We extend the existing theory on large-time asymptotics for convection-diffusion equations, based on the entropy-entropy dissipation approach, to certain fast diffusion equations with uniformly convex confinement potential and finite-mass but infinite-entropy equilibrium solutions. We prove existence of a mass preserving solution of the Cauchy problem and we show exponential convergence, as t → ∞, at a precise rate to the corresponding equilibrium solution in the L1 norm. As by-product we also derive corresponding generalized Sobolev inequalities.
title On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass
spellingShingle On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass
title_short On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass
title_full On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass
title_fullStr On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass
title_full_unstemmed On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass
title_sort on fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass
publishDate 2003
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03605302_v28_n1-2_p301_Lederman
http://hdl.handle.net/20.500.12110/paper_03605302_v28_n1-2_p301_Lederman
_version_ 1768543899632009216