On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass
We extend the existing theory on large-time asymptotics for convection-diffusion equations, based on the entropy-entropy dissipation approach, to certain fast diffusion equations with uniformly convex confinement potential and finite-mass but infinite-entropy equilibrium solutions. We prove existenc...
Publicado: |
2003
|
---|---|
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03605302_v28_n1-2_p301_Lederman http://hdl.handle.net/20.500.12110/paper_03605302_v28_n1-2_p301_Lederman |
Aporte de: |
id |
paper:paper_03605302_v28_n1-2_p301_Lederman |
---|---|
record_format |
dspace |
spelling |
paper:paper_03605302_v28_n1-2_p301_Lederman2023-06-08T15:34:47Z On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass We extend the existing theory on large-time asymptotics for convection-diffusion equations, based on the entropy-entropy dissipation approach, to certain fast diffusion equations with uniformly convex confinement potential and finite-mass but infinite-entropy equilibrium solutions. We prove existence of a mass preserving solution of the Cauchy problem and we show exponential convergence, as t → ∞, at a precise rate to the corresponding equilibrium solution in the L1 norm. As by-product we also derive corresponding generalized Sobolev inequalities. 2003 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03605302_v28_n1-2_p301_Lederman http://hdl.handle.net/20.500.12110/paper_03605302_v28_n1-2_p301_Lederman |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
We extend the existing theory on large-time asymptotics for convection-diffusion equations, based on the entropy-entropy dissipation approach, to certain fast diffusion equations with uniformly convex confinement potential and finite-mass but infinite-entropy equilibrium solutions. We prove existence of a mass preserving solution of the Cauchy problem and we show exponential convergence, as t → ∞, at a precise rate to the corresponding equilibrium solution in the L1 norm. As by-product we also derive corresponding generalized Sobolev inequalities. |
title |
On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass |
spellingShingle |
On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass |
title_short |
On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass |
title_full |
On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass |
title_fullStr |
On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass |
title_full_unstemmed |
On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass |
title_sort |
on fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass |
publishDate |
2003 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03605302_v28_n1-2_p301_Lederman http://hdl.handle.net/20.500.12110/paper_03605302_v28_n1-2_p301_Lederman |
_version_ |
1768543899632009216 |