Normal numbers and finite automata
We give an elementary and direct proof of the following theorem: A real number is normal to a given integer base if, and only if, its expansion in that base is incompressible by lossless finite-state compressors (these are finite automata augmented with an output transition function such that the au...
Autores principales: | , |
---|---|
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03043975_v477_n_p109_Becher http://hdl.handle.net/20.500.12110/paper_03043975_v477_n_p109_Becher |
Aporte de: |
id |
paper:paper_03043975_v477_n_p109_Becher |
---|---|
record_format |
dspace |
spelling |
paper:paper_03043975_v477_n_p109_Becher2023-06-08T15:29:39Z Normal numbers and finite automata Becher, Verónica Andrea Heiber, Pablo Ariel Finite state transducers Finite-state Input-output Lossless Normal numbers Output transition Real number Number theory Theorem proving Finite automata We give an elementary and direct proof of the following theorem: A real number is normal to a given integer base if, and only if, its expansion in that base is incompressible by lossless finite-state compressors (these are finite automata augmented with an output transition function such that the automata input-output behaviour is injective; they are also known as injective finite-state transducers). As a corollary we obtain V.N. Agafonov's theorem on the preservation of normality on subsequences selected by finite automata.© 2012 Elsevier B.V. All rights reserved. Fil:Becher, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Heiber, P.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2013 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03043975_v477_n_p109_Becher http://hdl.handle.net/20.500.12110/paper_03043975_v477_n_p109_Becher |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Finite state transducers Finite-state Input-output Lossless Normal numbers Output transition Real number Number theory Theorem proving Finite automata |
spellingShingle |
Finite state transducers Finite-state Input-output Lossless Normal numbers Output transition Real number Number theory Theorem proving Finite automata Becher, Verónica Andrea Heiber, Pablo Ariel Normal numbers and finite automata |
topic_facet |
Finite state transducers Finite-state Input-output Lossless Normal numbers Output transition Real number Number theory Theorem proving Finite automata |
description |
We give an elementary and direct proof of the following theorem: A real number is normal to a given integer base if, and only if, its expansion in that base is incompressible by lossless finite-state compressors (these are finite automata augmented with an output transition function such that the automata input-output behaviour is injective; they are also known as injective finite-state transducers). As a corollary we obtain V.N. Agafonov's theorem on the preservation of normality on subsequences selected by finite automata.© 2012 Elsevier B.V. All rights reserved. |
author |
Becher, Verónica Andrea Heiber, Pablo Ariel |
author_facet |
Becher, Verónica Andrea Heiber, Pablo Ariel |
author_sort |
Becher, Verónica Andrea |
title |
Normal numbers and finite automata |
title_short |
Normal numbers and finite automata |
title_full |
Normal numbers and finite automata |
title_fullStr |
Normal numbers and finite automata |
title_full_unstemmed |
Normal numbers and finite automata |
title_sort |
normal numbers and finite automata |
publishDate |
2013 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03043975_v477_n_p109_Becher http://hdl.handle.net/20.500.12110/paper_03043975_v477_n_p109_Becher |
work_keys_str_mv |
AT becherveronicaandrea normalnumbersandfiniteautomata AT heiberpabloariel normalnumbersandfiniteautomata |
_version_ |
1768544502775021568 |