Parallel genetic algorithms for crystal structure prediction: Successes and failures in predicting bicalutamide polymorphs
This paper describes the application of our distributed computing framework for crystal structure prediction, Modified Genetic Algorithms for Crystal and Cluster Prediction (MGAC), to predict the crystal structure of the two known polymorphs of bicalutamide. The paper describes our success in findin...
Guardado en:
Autores principales: | , |
---|---|
Publicado: |
2009
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v5754LNCS_n_p120_Ferraro http://hdl.handle.net/20.500.12110/paper_03029743_v5754LNCS_n_p120_Ferraro |
Aporte de: |
id |
paper:paper_03029743_v5754LNCS_n_p120_Ferraro |
---|---|
record_format |
dspace |
spelling |
paper:paper_03029743_v5754LNCS_n_p120_Ferraro2023-06-08T15:28:33Z Parallel genetic algorithms for crystal structure prediction: Successes and failures in predicting bicalutamide polymorphs Ferraro, Marta Beatriz Facelli, Julio César Crystal structure prediction Drug polymorphism Parallel genetic algorithms Bicalutamide Cluster prediction Crystal conformation Crystal structure prediction Distributed Computing Drug polymorphism Energy potential Low energies Lower energies Modified genetic algorithms Parallel genetic algorithms Second optimization Selection process Spurious effects Unit-cell volume Cell membranes Clustering algorithms Computer science Genetic algorithms Intelligent computing Parallel algorithms Polymorphism Crystal structure This paper describes the application of our distributed computing framework for crystal structure prediction, Modified Genetic Algorithms for Crystal and Cluster Prediction (MGAC), to predict the crystal structure of the two known polymorphs of bicalutamide. The paper describes our success in finding the lower energy polymorph and the difficulties encountered in finding the second one. The results show that genetic algorithms are very effective in finding low energy crystal conformations, but unfortunately many of them are not plausible due to spurious effects introduced by the energy potential function used in the selection process. We propose to solve this by using a multi objective optimization GA approach, adding the unit cell volume as a second optimization target. © 2009 Springer Berlin Heidelberg. Fil:Ferraro, M.B. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Facelli, J.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2009 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v5754LNCS_n_p120_Ferraro http://hdl.handle.net/20.500.12110/paper_03029743_v5754LNCS_n_p120_Ferraro |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Crystal structure prediction Drug polymorphism Parallel genetic algorithms Bicalutamide Cluster prediction Crystal conformation Crystal structure prediction Distributed Computing Drug polymorphism Energy potential Low energies Lower energies Modified genetic algorithms Parallel genetic algorithms Second optimization Selection process Spurious effects Unit-cell volume Cell membranes Clustering algorithms Computer science Genetic algorithms Intelligent computing Parallel algorithms Polymorphism Crystal structure |
spellingShingle |
Crystal structure prediction Drug polymorphism Parallel genetic algorithms Bicalutamide Cluster prediction Crystal conformation Crystal structure prediction Distributed Computing Drug polymorphism Energy potential Low energies Lower energies Modified genetic algorithms Parallel genetic algorithms Second optimization Selection process Spurious effects Unit-cell volume Cell membranes Clustering algorithms Computer science Genetic algorithms Intelligent computing Parallel algorithms Polymorphism Crystal structure Ferraro, Marta Beatriz Facelli, Julio César Parallel genetic algorithms for crystal structure prediction: Successes and failures in predicting bicalutamide polymorphs |
topic_facet |
Crystal structure prediction Drug polymorphism Parallel genetic algorithms Bicalutamide Cluster prediction Crystal conformation Crystal structure prediction Distributed Computing Drug polymorphism Energy potential Low energies Lower energies Modified genetic algorithms Parallel genetic algorithms Second optimization Selection process Spurious effects Unit-cell volume Cell membranes Clustering algorithms Computer science Genetic algorithms Intelligent computing Parallel algorithms Polymorphism Crystal structure |
description |
This paper describes the application of our distributed computing framework for crystal structure prediction, Modified Genetic Algorithms for Crystal and Cluster Prediction (MGAC), to predict the crystal structure of the two known polymorphs of bicalutamide. The paper describes our success in finding the lower energy polymorph and the difficulties encountered in finding the second one. The results show that genetic algorithms are very effective in finding low energy crystal conformations, but unfortunately many of them are not plausible due to spurious effects introduced by the energy potential function used in the selection process. We propose to solve this by using a multi objective optimization GA approach, adding the unit cell volume as a second optimization target. © 2009 Springer Berlin Heidelberg. |
author |
Ferraro, Marta Beatriz Facelli, Julio César |
author_facet |
Ferraro, Marta Beatriz Facelli, Julio César |
author_sort |
Ferraro, Marta Beatriz |
title |
Parallel genetic algorithms for crystal structure prediction: Successes and failures in predicting bicalutamide polymorphs |
title_short |
Parallel genetic algorithms for crystal structure prediction: Successes and failures in predicting bicalutamide polymorphs |
title_full |
Parallel genetic algorithms for crystal structure prediction: Successes and failures in predicting bicalutamide polymorphs |
title_fullStr |
Parallel genetic algorithms for crystal structure prediction: Successes and failures in predicting bicalutamide polymorphs |
title_full_unstemmed |
Parallel genetic algorithms for crystal structure prediction: Successes and failures in predicting bicalutamide polymorphs |
title_sort |
parallel genetic algorithms for crystal structure prediction: successes and failures in predicting bicalutamide polymorphs |
publishDate |
2009 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v5754LNCS_n_p120_Ferraro http://hdl.handle.net/20.500.12110/paper_03029743_v5754LNCS_n_p120_Ferraro |
work_keys_str_mv |
AT ferraromartabeatriz parallelgeneticalgorithmsforcrystalstructurepredictionsuccessesandfailuresinpredictingbicalutamidepolymorphs AT facellijuliocesar parallelgeneticalgorithmsforcrystalstructurepredictionsuccessesandfailuresinpredictingbicalutamidepolymorphs |
_version_ |
1768546252196151296 |