Fork algebras as a sufficiently rich universal institution
Algebraization of computational logics in the theory of fork algebras has been a research topic for a while. This research allowed us to interpret classical first-order logic, several prepositional monomodal logics, prepositional and first-order dynamic logic, and prepositional and first-order linea...
Autores principales: | , |
---|---|
Publicado: |
2006
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v4019LNCS_n_p235_Pombo http://hdl.handle.net/20.500.12110/paper_03029743_v4019LNCS_n_p235_Pombo |
Aporte de: |
id |
paper:paper_03029743_v4019LNCS_n_p235_Pombo |
---|---|
record_format |
dspace |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Artificial intelligence Computational complexity Computer science Formal logic Software engineering Computational logics Fork algebras Monomodal logics Algebra |
spellingShingle |
Artificial intelligence Computational complexity Computer science Formal logic Software engineering Computational logics Fork algebras Monomodal logics Algebra López Pombo, Carlos Gustavo Frias, Marcelo Fork algebras as a sufficiently rich universal institution |
topic_facet |
Artificial intelligence Computational complexity Computer science Formal logic Software engineering Computational logics Fork algebras Monomodal logics Algebra |
description |
Algebraization of computational logics in the theory of fork algebras has been a research topic for a while. This research allowed us to interpret classical first-order logic, several prepositional monomodal logics, prepositional and first-order dynamic logic, and prepositional and first-order linear temporal logic in the theory of fork algebras. In this paper we formalize these interpretability results as institution representations from the institution of the corresponding logics to that of fork algebra. We also advocate for the institution of fork algebras as a sufficiently rich universal institution into which institutions meaningful in software development can be represented. © Springer-Verlag Berlin Heidelberg 2006. |
author |
López Pombo, Carlos Gustavo Frias, Marcelo |
author_facet |
López Pombo, Carlos Gustavo Frias, Marcelo |
author_sort |
López Pombo, Carlos Gustavo |
title |
Fork algebras as a sufficiently rich universal institution |
title_short |
Fork algebras as a sufficiently rich universal institution |
title_full |
Fork algebras as a sufficiently rich universal institution |
title_fullStr |
Fork algebras as a sufficiently rich universal institution |
title_full_unstemmed |
Fork algebras as a sufficiently rich universal institution |
title_sort |
fork algebras as a sufficiently rich universal institution |
publishDate |
2006 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v4019LNCS_n_p235_Pombo http://hdl.handle.net/20.500.12110/paper_03029743_v4019LNCS_n_p235_Pombo |
work_keys_str_mv |
AT lopezpombocarlosgustavo forkalgebrasasasufficientlyrichuniversalinstitution AT friasmarcelo forkalgebrasasasufficientlyrichuniversalinstitution |
bdutipo_str |
Repositorios |
_version_ |
1764820562788483073 |