Optimization problem for extremals of the trace inequality in domains with holes
We study the Sobolev trace constant for functions defined in a bounded domain Ω that vanish in the subset A. We find a formula for the first variation of the Sobolev trace with respect to the hole. As a consequence of this formula, we prove that when Ω is a centered ball, the symmetric hole is criti...
Guardado en:
Autor principal: | Del Pezzo, Leandro M. |
---|---|
Publicado: |
2010
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02191997_v12_n4_p569_DelPezzo http://hdl.handle.net/20.500.12110/paper_02191997_v12_n4_p569_DelPezzo |
Aporte de: |
Ejemplares similares
-
Optimization problem for extremals of the trace inequality in domains with holes
por: Del Pezzo, L.M. -
Optimization of the first Steklov eigenvalue in domains with holes: A shape derivative approach
Publicado: (2007) -
Optimization of the first Steklov eigenvalue in domains with holes: A shape derivative approach
por: Bonder, J.F., et al. -
The best Sobolev trace constant in a domain with oscillating boundary
por: Fernandez Bonder, Julian, et al.
Publicado: (2007) -
The best Sobolev trace constant in a domain with oscillating boundary
por: Fernández Bonder, J., et al.