A posteriori error estimates for the finite element approximation of eigenvalue problems

This paper deals with a posteriori error estimators for the linear finite element approximation of second-order elliptic eigenvalue problems in two or three dimensions. First, we give a simple proof of the equivalence, up to higher order terms, between the error and a residual type error estimator....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Duran, Ricardo Guillermo, Padra, Claudio
Publicado: 2003
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02182025_v13_n8_p1219_Duran
http://hdl.handle.net/20.500.12110/paper_02182025_v13_n8_p1219_Duran
Aporte de:
id paper:paper_02182025_v13_n8_p1219_Duran
record_format dspace
spelling paper:paper_02182025_v13_n8_p1219_Duran2023-06-08T15:21:22Z A posteriori error estimates for the finite element approximation of eigenvalue problems Duran, Ricardo Guillermo Padra, Claudio A posteriori error estimates Eigenvalue problems Finite elements This paper deals with a posteriori error estimators for the linear finite element approximation of second-order elliptic eigenvalue problems in two or three dimensions. First, we give a simple proof of the equivalence, up to higher order terms, between the error and a residual type error estimator. Second, we prove that the volumetric part of the residual is dominated by a constant times the edge or face residuals, again up to higher order terms. This result was not known for eigenvalue problems. Fil:Duran, R.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Padra, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2003 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02182025_v13_n8_p1219_Duran http://hdl.handle.net/20.500.12110/paper_02182025_v13_n8_p1219_Duran
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic A posteriori error estimates
Eigenvalue problems
Finite elements
spellingShingle A posteriori error estimates
Eigenvalue problems
Finite elements
Duran, Ricardo Guillermo
Padra, Claudio
A posteriori error estimates for the finite element approximation of eigenvalue problems
topic_facet A posteriori error estimates
Eigenvalue problems
Finite elements
description This paper deals with a posteriori error estimators for the linear finite element approximation of second-order elliptic eigenvalue problems in two or three dimensions. First, we give a simple proof of the equivalence, up to higher order terms, between the error and a residual type error estimator. Second, we prove that the volumetric part of the residual is dominated by a constant times the edge or face residuals, again up to higher order terms. This result was not known for eigenvalue problems.
author Duran, Ricardo Guillermo
Padra, Claudio
author_facet Duran, Ricardo Guillermo
Padra, Claudio
author_sort Duran, Ricardo Guillermo
title A posteriori error estimates for the finite element approximation of eigenvalue problems
title_short A posteriori error estimates for the finite element approximation of eigenvalue problems
title_full A posteriori error estimates for the finite element approximation of eigenvalue problems
title_fullStr A posteriori error estimates for the finite element approximation of eigenvalue problems
title_full_unstemmed A posteriori error estimates for the finite element approximation of eigenvalue problems
title_sort posteriori error estimates for the finite element approximation of eigenvalue problems
publishDate 2003
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02182025_v13_n8_p1219_Duran
http://hdl.handle.net/20.500.12110/paper_02182025_v13_n8_p1219_Duran
work_keys_str_mv AT duranricardoguillermo aposteriorierrorestimatesforthefiniteelementapproximationofeigenvalueproblems
AT padraclaudio aposteriorierrorestimatesforthefiniteelementapproximationofeigenvalueproblems
AT duranricardoguillermo posteriorierrorestimatesforthefiniteelementapproximationofeigenvalueproblems
AT padraclaudio posteriorierrorestimatesforthefiniteelementapproximationofeigenvalueproblems
_version_ 1768545970475237376