A note on Gaussian integrals over para-Grassmann variables

We discuss the generalization of the connection between the determinant of an operator entering a quadratic form and the associated Gaussian path-integral valid for Grassmann variables to the para-Grassmann case [θp+1 = 0 with p = 1 (p > 1) for Grassmann (para-Grassmann) variables]. We show t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Publicado: 2004
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0217751X_v19_n11_p1705_Cugliandolo
http://hdl.handle.net/20.500.12110/paper_0217751X_v19_n11_p1705_Cugliandolo
Aporte de:
Descripción
Sumario:We discuss the generalization of the connection between the determinant of an operator entering a quadratic form and the associated Gaussian path-integral valid for Grassmann variables to the para-Grassmann case [θp+1 = 0 with p = 1 (p > 1) for Grassmann (para-Grassmann) variables]. We show that the q-deformed commutation relations of the para-Grassmann variables lead naturally to consider q-deformed quadratic forms related to multiparametric deformations of GL(n) and their corresponding q-determinants. We suggest a possible application to the study of disordered systems.