A note on Gaussian integrals over para-Grassmann variables
We discuss the generalization of the connection between the determinant of an operator entering a quadratic form and the associated Gaussian path-integral valid for Grassmann variables to the para-Grassmann case [θp+1 = 0 with p = 1 (p > 1) for Grassmann (para-Grassmann) variables]. We show t...
Guardado en:
Publicado: |
2004
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0217751X_v19_n11_p1705_Cugliandolo http://hdl.handle.net/20.500.12110/paper_0217751X_v19_n11_p1705_Cugliandolo |
Aporte de: |
id |
paper:paper_0217751X_v19_n11_p1705_Cugliandolo |
---|---|
record_format |
dspace |
spelling |
paper:paper_0217751X_v19_n11_p1705_Cugliandolo2023-06-08T15:21:08Z A note on Gaussian integrals over para-Grassmann variables Para-Grassmann variables Path integrals article calculation mathematical computing mathematical model We discuss the generalization of the connection between the determinant of an operator entering a quadratic form and the associated Gaussian path-integral valid for Grassmann variables to the para-Grassmann case [θp+1 = 0 with p = 1 (p > 1) for Grassmann (para-Grassmann) variables]. We show that the q-deformed commutation relations of the para-Grassmann variables lead naturally to consider q-deformed quadratic forms related to multiparametric deformations of GL(n) and their corresponding q-determinants. We suggest a possible application to the study of disordered systems. 2004 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0217751X_v19_n11_p1705_Cugliandolo http://hdl.handle.net/20.500.12110/paper_0217751X_v19_n11_p1705_Cugliandolo |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Para-Grassmann variables Path integrals article calculation mathematical computing mathematical model |
spellingShingle |
Para-Grassmann variables Path integrals article calculation mathematical computing mathematical model A note on Gaussian integrals over para-Grassmann variables |
topic_facet |
Para-Grassmann variables Path integrals article calculation mathematical computing mathematical model |
description |
We discuss the generalization of the connection between the determinant of an operator entering a quadratic form and the associated Gaussian path-integral valid for Grassmann variables to the para-Grassmann case [θp+1 = 0 with p = 1 (p > 1) for Grassmann (para-Grassmann) variables]. We show that the q-deformed commutation relations of the para-Grassmann variables lead naturally to consider q-deformed quadratic forms related to multiparametric deformations of GL(n) and their corresponding q-determinants. We suggest a possible application to the study of disordered systems. |
title |
A note on Gaussian integrals over para-Grassmann variables |
title_short |
A note on Gaussian integrals over para-Grassmann variables |
title_full |
A note on Gaussian integrals over para-Grassmann variables |
title_fullStr |
A note on Gaussian integrals over para-Grassmann variables |
title_full_unstemmed |
A note on Gaussian integrals over para-Grassmann variables |
title_sort |
note on gaussian integrals over para-grassmann variables |
publishDate |
2004 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0217751X_v19_n11_p1705_Cugliandolo http://hdl.handle.net/20.500.12110/paper_0217751X_v19_n11_p1705_Cugliandolo |
_version_ |
1768545415244808192 |