A note on Gaussian integrals over para-Grassmann variables

We discuss the generalization of the connection between the determinant of an operator entering a quadratic form and the associated Gaussian path-integral valid for Grassmann variables to the para-Grassmann case [θp+1 = 0 with p = 1 (p > 1) for Grassmann (para-Grassmann) variables]. We show t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Publicado: 2004
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0217751X_v19_n11_p1705_Cugliandolo
http://hdl.handle.net/20.500.12110/paper_0217751X_v19_n11_p1705_Cugliandolo
Aporte de:
id paper:paper_0217751X_v19_n11_p1705_Cugliandolo
record_format dspace
spelling paper:paper_0217751X_v19_n11_p1705_Cugliandolo2023-06-08T15:21:08Z A note on Gaussian integrals over para-Grassmann variables Para-Grassmann variables Path integrals article calculation mathematical computing mathematical model We discuss the generalization of the connection between the determinant of an operator entering a quadratic form and the associated Gaussian path-integral valid for Grassmann variables to the para-Grassmann case [θp+1 = 0 with p = 1 (p > 1) for Grassmann (para-Grassmann) variables]. We show that the q-deformed commutation relations of the para-Grassmann variables lead naturally to consider q-deformed quadratic forms related to multiparametric deformations of GL(n) and their corresponding q-determinants. We suggest a possible application to the study of disordered systems. 2004 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0217751X_v19_n11_p1705_Cugliandolo http://hdl.handle.net/20.500.12110/paper_0217751X_v19_n11_p1705_Cugliandolo
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Para-Grassmann variables
Path integrals
article
calculation
mathematical computing
mathematical model
spellingShingle Para-Grassmann variables
Path integrals
article
calculation
mathematical computing
mathematical model
A note on Gaussian integrals over para-Grassmann variables
topic_facet Para-Grassmann variables
Path integrals
article
calculation
mathematical computing
mathematical model
description We discuss the generalization of the connection between the determinant of an operator entering a quadratic form and the associated Gaussian path-integral valid for Grassmann variables to the para-Grassmann case [θp+1 = 0 with p = 1 (p > 1) for Grassmann (para-Grassmann) variables]. We show that the q-deformed commutation relations of the para-Grassmann variables lead naturally to consider q-deformed quadratic forms related to multiparametric deformations of GL(n) and their corresponding q-determinants. We suggest a possible application to the study of disordered systems.
title A note on Gaussian integrals over para-Grassmann variables
title_short A note on Gaussian integrals over para-Grassmann variables
title_full A note on Gaussian integrals over para-Grassmann variables
title_fullStr A note on Gaussian integrals over para-Grassmann variables
title_full_unstemmed A note on Gaussian integrals over para-Grassmann variables
title_sort note on gaussian integrals over para-grassmann variables
publishDate 2004
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0217751X_v19_n11_p1705_Cugliandolo
http://hdl.handle.net/20.500.12110/paper_0217751X_v19_n11_p1705_Cugliandolo
_version_ 1768545415244808192