A posteriori error estimates for non-conforming approximation of eigenvalue problems

We consider the approximation of eigenvalue problem for the Laplacian by the Crouzeix-Raviart non-conforming finite elements in two and three dimensions. Extending known techniques for source problems, we introduce a posteriori error estimators for eigenvectors and eigenvalues. We prove that the err...

Descripción completa

Detalles Bibliográficos
Autores principales: Duran, Ricardo Guillermo, Padra, Claudio
Publicado: 2012
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01689274_v62_n5_p580_Dari
http://hdl.handle.net/20.500.12110/paper_01689274_v62_n5_p580_Dari
Aporte de:
id paper:paper_01689274_v62_n5_p580_Dari
record_format dspace
spelling paper:paper_01689274_v62_n5_p580_Dari2023-06-08T15:18:06Z A posteriori error estimates for non-conforming approximation of eigenvalue problems Duran, Ricardo Guillermo Padra, Claudio A posteriori error estimators Eigenvalue problems Non-conforming finite elements A-posteriori error estimates Adaptive procedure Eigen-value Eigenvalue problem Eigenvalues Energy norm Error estimators Higher order terms Laplacians Non-conforming finite elements Nonconforming finite element Number of degrees of freedom Numerical example Posteriori error estimator Three dimensions Upper Bound Error analysis Switching systems Eigenvalues and eigenfunctions We consider the approximation of eigenvalue problem for the Laplacian by the Crouzeix-Raviart non-conforming finite elements in two and three dimensions. Extending known techniques for source problems, we introduce a posteriori error estimators for eigenvectors and eigenvalues. We prove that the error estimator is equivalent to the energy norm of the eigenvector error up to higher order terms. Moreover, we prove that our estimator provides an upper bound for the error in the approximation of the first eigenvalue, also up to higher order terms. We present numerical examples of an adaptive procedure based on our error estimator in two and three dimensions. These examples show that the error in the adaptive procedure is optimal in terms of the number of degrees of freedom. © 2012 IMACS. Published by Elsevier B.V. All rights reserved. Fil:Durán, R.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Padra, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2012 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01689274_v62_n5_p580_Dari http://hdl.handle.net/20.500.12110/paper_01689274_v62_n5_p580_Dari
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic A posteriori error estimators
Eigenvalue problems
Non-conforming finite elements
A-posteriori error estimates
Adaptive procedure
Eigen-value
Eigenvalue problem
Eigenvalues
Energy norm
Error estimators
Higher order terms
Laplacians
Non-conforming finite elements
Nonconforming finite element
Number of degrees of freedom
Numerical example
Posteriori error estimator
Three dimensions
Upper Bound
Error analysis
Switching systems
Eigenvalues and eigenfunctions
spellingShingle A posteriori error estimators
Eigenvalue problems
Non-conforming finite elements
A-posteriori error estimates
Adaptive procedure
Eigen-value
Eigenvalue problem
Eigenvalues
Energy norm
Error estimators
Higher order terms
Laplacians
Non-conforming finite elements
Nonconforming finite element
Number of degrees of freedom
Numerical example
Posteriori error estimator
Three dimensions
Upper Bound
Error analysis
Switching systems
Eigenvalues and eigenfunctions
Duran, Ricardo Guillermo
Padra, Claudio
A posteriori error estimates for non-conforming approximation of eigenvalue problems
topic_facet A posteriori error estimators
Eigenvalue problems
Non-conforming finite elements
A-posteriori error estimates
Adaptive procedure
Eigen-value
Eigenvalue problem
Eigenvalues
Energy norm
Error estimators
Higher order terms
Laplacians
Non-conforming finite elements
Nonconforming finite element
Number of degrees of freedom
Numerical example
Posteriori error estimator
Three dimensions
Upper Bound
Error analysis
Switching systems
Eigenvalues and eigenfunctions
description We consider the approximation of eigenvalue problem for the Laplacian by the Crouzeix-Raviart non-conforming finite elements in two and three dimensions. Extending known techniques for source problems, we introduce a posteriori error estimators for eigenvectors and eigenvalues. We prove that the error estimator is equivalent to the energy norm of the eigenvector error up to higher order terms. Moreover, we prove that our estimator provides an upper bound for the error in the approximation of the first eigenvalue, also up to higher order terms. We present numerical examples of an adaptive procedure based on our error estimator in two and three dimensions. These examples show that the error in the adaptive procedure is optimal in terms of the number of degrees of freedom. © 2012 IMACS. Published by Elsevier B.V. All rights reserved.
author Duran, Ricardo Guillermo
Padra, Claudio
author_facet Duran, Ricardo Guillermo
Padra, Claudio
author_sort Duran, Ricardo Guillermo
title A posteriori error estimates for non-conforming approximation of eigenvalue problems
title_short A posteriori error estimates for non-conforming approximation of eigenvalue problems
title_full A posteriori error estimates for non-conforming approximation of eigenvalue problems
title_fullStr A posteriori error estimates for non-conforming approximation of eigenvalue problems
title_full_unstemmed A posteriori error estimates for non-conforming approximation of eigenvalue problems
title_sort posteriori error estimates for non-conforming approximation of eigenvalue problems
publishDate 2012
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01689274_v62_n5_p580_Dari
http://hdl.handle.net/20.500.12110/paper_01689274_v62_n5_p580_Dari
work_keys_str_mv AT duranricardoguillermo aposteriorierrorestimatesfornonconformingapproximationofeigenvalueproblems
AT padraclaudio aposteriorierrorestimatesfornonconformingapproximationofeigenvalueproblems
AT duranricardoguillermo posteriorierrorestimatesfornonconformingapproximationofeigenvalueproblems
AT padraclaudio posteriorierrorestimatesfornonconformingapproximationofeigenvalueproblems
_version_ 1768542500674338816