Infinite-range quantum random Heisenberg magnet

We study with exact diagonalization techniques the Heisenberg model for a system of SU(2) spins with S=1/2 and random infinite-range exchange interactions. We calculate the critical temperature Tg for the spin-glass to paramagnetic transition. We obtain Tg≈0.13, in good agreement with previous quant...

Descripción completa

Detalles Bibliográficos
Autor principal: Rozenberg, Marcelo Javier
Publicado: 2002
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01631829_v65_n22_p2244301_Arrachea
http://hdl.handle.net/20.500.12110/paper_01631829_v65_n22_p2244301_Arrachea
Aporte de:
id paper:paper_01631829_v65_n22_p2244301_Arrachea
record_format dspace
spelling paper:paper_01631829_v65_n22_p2244301_Arrachea2023-06-08T15:13:57Z Infinite-range quantum random Heisenberg magnet Rozenberg, Marcelo Javier glass acceleration article calculation magnet mathematical analysis model Monte Carlo method quantum mechanics We study with exact diagonalization techniques the Heisenberg model for a system of SU(2) spins with S=1/2 and random infinite-range exchange interactions. We calculate the critical temperature Tg for the spin-glass to paramagnetic transition. We obtain Tg≈0.13, in good agreement with previous quantum Monte Carlo and analytical estimates. We provide a detailed picture for the different kind of excitations which intervene in the dynamical response Χ″(ω,T) at T=0 and analyze their evolution as T increases. We also calculate the specific heat Cv(T). We find that it displays a smooth maximum at TM≈0.25, in good qualitative agreement with experiments. We argue that the fact that TM>Tg is due to a quantum disorder effect. Fil:Rozenberg, M.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2002 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01631829_v65_n22_p2244301_Arrachea http://hdl.handle.net/20.500.12110/paper_01631829_v65_n22_p2244301_Arrachea
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic glass
acceleration
article
calculation
magnet
mathematical analysis
model
Monte Carlo method
quantum mechanics
spellingShingle glass
acceleration
article
calculation
magnet
mathematical analysis
model
Monte Carlo method
quantum mechanics
Rozenberg, Marcelo Javier
Infinite-range quantum random Heisenberg magnet
topic_facet glass
acceleration
article
calculation
magnet
mathematical analysis
model
Monte Carlo method
quantum mechanics
description We study with exact diagonalization techniques the Heisenberg model for a system of SU(2) spins with S=1/2 and random infinite-range exchange interactions. We calculate the critical temperature Tg for the spin-glass to paramagnetic transition. We obtain Tg≈0.13, in good agreement with previous quantum Monte Carlo and analytical estimates. We provide a detailed picture for the different kind of excitations which intervene in the dynamical response Χ″(ω,T) at T=0 and analyze their evolution as T increases. We also calculate the specific heat Cv(T). We find that it displays a smooth maximum at TM≈0.25, in good qualitative agreement with experiments. We argue that the fact that TM>Tg is due to a quantum disorder effect.
author Rozenberg, Marcelo Javier
author_facet Rozenberg, Marcelo Javier
author_sort Rozenberg, Marcelo Javier
title Infinite-range quantum random Heisenberg magnet
title_short Infinite-range quantum random Heisenberg magnet
title_full Infinite-range quantum random Heisenberg magnet
title_fullStr Infinite-range quantum random Heisenberg magnet
title_full_unstemmed Infinite-range quantum random Heisenberg magnet
title_sort infinite-range quantum random heisenberg magnet
publishDate 2002
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01631829_v65_n22_p2244301_Arrachea
http://hdl.handle.net/20.500.12110/paper_01631829_v65_n22_p2244301_Arrachea
work_keys_str_mv AT rozenbergmarcelojavier infiniterangequantumrandomheisenbergmagnet
_version_ 1768541604345282560