An explicit formula for PBW quantization

Let k be a field of characteristic zero, g a k-Lie algebra, e : Sg → Ug the symmetrization map. The PBW quantization is the one parameter family of associative products: x *t y = ∑p=0∞ Bp(x, y) tp (t ∈ k) where Bp is the homogeneous component of degree -p of the map B: Sg ⊗k Sg → Sg, B(x, y) = e-1 (...

Descripción completa

Guardado en:
Detalles Bibliográficos
Publicado: 2002
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00927872_v30_n4_p1705_Cortinas
http://hdl.handle.net/20.500.12110/paper_00927872_v30_n4_p1705_Cortinas
Aporte de:
id paper:paper_00927872_v30_n4_p1705_Cortinas
record_format dspace
spelling paper:paper_00927872_v30_n4_p1705_Cortinas2023-06-08T15:08:19Z An explicit formula for PBW quantization Let k be a field of characteristic zero, g a k-Lie algebra, e : Sg → Ug the symmetrization map. The PBW quantization is the one parameter family of associative products: x *t y = ∑p=0∞ Bp(x, y) tp (t ∈ k) where Bp is the homogeneous component of degree -p of the map B: Sg ⊗k Sg → Sg, B(x, y) = e-1 (exey). In this paper we give an explicit formula for B. As an application, we prove that for each p ≥ 0, Bp is a bidifferential operator of order ≤ p. 2002 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00927872_v30_n4_p1705_Cortinas http://hdl.handle.net/20.500.12110/paper_00927872_v30_n4_p1705_Cortinas
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description Let k be a field of characteristic zero, g a k-Lie algebra, e : Sg → Ug the symmetrization map. The PBW quantization is the one parameter family of associative products: x *t y = ∑p=0∞ Bp(x, y) tp (t ∈ k) where Bp is the homogeneous component of degree -p of the map B: Sg ⊗k Sg → Sg, B(x, y) = e-1 (exey). In this paper we give an explicit formula for B. As an application, we prove that for each p ≥ 0, Bp is a bidifferential operator of order ≤ p.
title An explicit formula for PBW quantization
spellingShingle An explicit formula for PBW quantization
title_short An explicit formula for PBW quantization
title_full An explicit formula for PBW quantization
title_fullStr An explicit formula for PBW quantization
title_full_unstemmed An explicit formula for PBW quantization
title_sort explicit formula for pbw quantization
publishDate 2002
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00927872_v30_n4_p1705_Cortinas
http://hdl.handle.net/20.500.12110/paper_00927872_v30_n4_p1705_Cortinas
_version_ 1768543507250675712