An explicit formula for PBW quantization
Let k be a field of characteristic zero, g a k-Lie algebra, e : Sg → Ug the symmetrization map. The PBW quantization is the one parameter family of associative products: x *t y = ∑p=0∞ Bp(x, y) tp (t ∈ k) where Bp is the homogeneous component of degree -p of the map B: Sg ⊗k Sg → Sg, B(x, y) = e-1 (...
Guardado en:
Publicado: |
2002
|
---|---|
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00927872_v30_n4_p1705_Cortinas http://hdl.handle.net/20.500.12110/paper_00927872_v30_n4_p1705_Cortinas |
Aporte de: |
id |
paper:paper_00927872_v30_n4_p1705_Cortinas |
---|---|
record_format |
dspace |
spelling |
paper:paper_00927872_v30_n4_p1705_Cortinas2023-06-08T15:08:19Z An explicit formula for PBW quantization Let k be a field of characteristic zero, g a k-Lie algebra, e : Sg → Ug the symmetrization map. The PBW quantization is the one parameter family of associative products: x *t y = ∑p=0∞ Bp(x, y) tp (t ∈ k) where Bp is the homogeneous component of degree -p of the map B: Sg ⊗k Sg → Sg, B(x, y) = e-1 (exey). In this paper we give an explicit formula for B. As an application, we prove that for each p ≥ 0, Bp is a bidifferential operator of order ≤ p. 2002 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00927872_v30_n4_p1705_Cortinas http://hdl.handle.net/20.500.12110/paper_00927872_v30_n4_p1705_Cortinas |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
Let k be a field of characteristic zero, g a k-Lie algebra, e : Sg → Ug the symmetrization map. The PBW quantization is the one parameter family of associative products: x *t y = ∑p=0∞ Bp(x, y) tp (t ∈ k) where Bp is the homogeneous component of degree -p of the map B: Sg ⊗k Sg → Sg, B(x, y) = e-1 (exey). In this paper we give an explicit formula for B. As an application, we prove that for each p ≥ 0, Bp is a bidifferential operator of order ≤ p. |
title |
An explicit formula for PBW quantization |
spellingShingle |
An explicit formula for PBW quantization |
title_short |
An explicit formula for PBW quantization |
title_full |
An explicit formula for PBW quantization |
title_fullStr |
An explicit formula for PBW quantization |
title_full_unstemmed |
An explicit formula for PBW quantization |
title_sort |
explicit formula for pbw quantization |
publishDate |
2002 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00927872_v30_n4_p1705_Cortinas http://hdl.handle.net/20.500.12110/paper_00927872_v30_n4_p1705_Cortinas |
_version_ |
1768543507250675712 |