Nonparametric likelihood based estimation for a multivariate Lipschitz density
We consider a problem of nonparametric density estimation under shape restrictions. We deal with the case where the density belongs to a class of Lipschitz functions. Devroye [L. Devroye, A Course in Density Estimation, in: Progress in Probability and Statistics, vol. 14, Birkhäuser Boston Inc., Bos...
Guardado en:
Autores principales: | , |
---|---|
Publicado: |
2009
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0047259X_v100_n5_p981_Carando http://hdl.handle.net/20.500.12110/paper_0047259X_v100_n5_p981_Carando |
Aporte de: |
id |
paper:paper_0047259X_v100_n5_p981_Carando |
---|---|
record_format |
dspace |
spelling |
paper:paper_0047259X_v100_n5_p981_Carando2023-06-08T15:05:34Z Nonparametric likelihood based estimation for a multivariate Lipschitz density Carando, Daniel German Groisman, Pablo Jose 62F30 62G07 62G20 Density estimation Maximum likelihood primary secondary Tailor-made estimates We consider a problem of nonparametric density estimation under shape restrictions. We deal with the case where the density belongs to a class of Lipschitz functions. Devroye [L. Devroye, A Course in Density Estimation, in: Progress in Probability and Statistics, vol. 14, Birkhäuser Boston Inc., Boston, MA, 1987] considered these classes of estimates as tailor-made estimates, in contrast in some way to universally consistent estimates. In our framework we get the existence and uniqueness of the maximum likelihood estimate as well as strong consistency. This NPMLE can be easily characterized but it is not easy to compute. Some simpler approximations are also considered. © 2008 Elsevier Inc. All rights reserved. Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Groisman, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2009 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0047259X_v100_n5_p981_Carando http://hdl.handle.net/20.500.12110/paper_0047259X_v100_n5_p981_Carando |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
62F30 62G07 62G20 Density estimation Maximum likelihood primary secondary Tailor-made estimates |
spellingShingle |
62F30 62G07 62G20 Density estimation Maximum likelihood primary secondary Tailor-made estimates Carando, Daniel German Groisman, Pablo Jose Nonparametric likelihood based estimation for a multivariate Lipschitz density |
topic_facet |
62F30 62G07 62G20 Density estimation Maximum likelihood primary secondary Tailor-made estimates |
description |
We consider a problem of nonparametric density estimation under shape restrictions. We deal with the case where the density belongs to a class of Lipschitz functions. Devroye [L. Devroye, A Course in Density Estimation, in: Progress in Probability and Statistics, vol. 14, Birkhäuser Boston Inc., Boston, MA, 1987] considered these classes of estimates as tailor-made estimates, in contrast in some way to universally consistent estimates. In our framework we get the existence and uniqueness of the maximum likelihood estimate as well as strong consistency. This NPMLE can be easily characterized but it is not easy to compute. Some simpler approximations are also considered. © 2008 Elsevier Inc. All rights reserved. |
author |
Carando, Daniel German Groisman, Pablo Jose |
author_facet |
Carando, Daniel German Groisman, Pablo Jose |
author_sort |
Carando, Daniel German |
title |
Nonparametric likelihood based estimation for a multivariate Lipschitz density |
title_short |
Nonparametric likelihood based estimation for a multivariate Lipschitz density |
title_full |
Nonparametric likelihood based estimation for a multivariate Lipschitz density |
title_fullStr |
Nonparametric likelihood based estimation for a multivariate Lipschitz density |
title_full_unstemmed |
Nonparametric likelihood based estimation for a multivariate Lipschitz density |
title_sort |
nonparametric likelihood based estimation for a multivariate lipschitz density |
publishDate |
2009 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0047259X_v100_n5_p981_Carando http://hdl.handle.net/20.500.12110/paper_0047259X_v100_n5_p981_Carando |
work_keys_str_mv |
AT carandodanielgerman nonparametriclikelihoodbasedestimationforamultivariatelipschitzdensity AT groismanpablojose nonparametriclikelihoodbasedestimationforamultivariatelipschitzdensity |
_version_ |
1768542880424525824 |