Error estimates in Sobolev spaces for moving least square approximations
The aim of this paper is to obtain error estimates for moving least square (MLS) approximations in ℝN. We prove that, under appropriate hypotheses on the weight function and the distribution of points, the method produces optimal order error estimates in L∞ and L2 for the approximations of the funct...
Guardado en:
Autor principal: | |
---|---|
Publicado: |
2002
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00361429_v39_n1_p38_Armentano http://hdl.handle.net/20.500.12110/paper_00361429_v39_n1_p38_Armentano |
Aporte de: |
id |
paper:paper_00361429_v39_n1_p38_Armentano |
---|---|
record_format |
dspace |
spelling |
paper:paper_00361429_v39_n1_p38_Armentano2023-06-08T15:01:58Z Error estimates in Sobolev spaces for moving least square approximations Armentano, Maria Gabriela Error estimates Meshless method Moving least square The aim of this paper is to obtain error estimates for moving least square (MLS) approximations in ℝN. We prove that, under appropriate hypotheses on the weight function and the distribution of points, the method produces optimal order error estimates in L∞ and L2 for the approximations of the function and its first derivatives. These estimates are important in the analysis of Galerkin approximations based on the MLS method. In particular, our results provide error estimates, optimal in order and regularity, for second order coercive problems. Fil:Armentano, M.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2002 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00361429_v39_n1_p38_Armentano http://hdl.handle.net/20.500.12110/paper_00361429_v39_n1_p38_Armentano |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Error estimates Meshless method Moving least square |
spellingShingle |
Error estimates Meshless method Moving least square Armentano, Maria Gabriela Error estimates in Sobolev spaces for moving least square approximations |
topic_facet |
Error estimates Meshless method Moving least square |
description |
The aim of this paper is to obtain error estimates for moving least square (MLS) approximations in ℝN. We prove that, under appropriate hypotheses on the weight function and the distribution of points, the method produces optimal order error estimates in L∞ and L2 for the approximations of the function and its first derivatives. These estimates are important in the analysis of Galerkin approximations based on the MLS method. In particular, our results provide error estimates, optimal in order and regularity, for second order coercive problems. |
author |
Armentano, Maria Gabriela |
author_facet |
Armentano, Maria Gabriela |
author_sort |
Armentano, Maria Gabriela |
title |
Error estimates in Sobolev spaces for moving least square approximations |
title_short |
Error estimates in Sobolev spaces for moving least square approximations |
title_full |
Error estimates in Sobolev spaces for moving least square approximations |
title_fullStr |
Error estimates in Sobolev spaces for moving least square approximations |
title_full_unstemmed |
Error estimates in Sobolev spaces for moving least square approximations |
title_sort |
error estimates in sobolev spaces for moving least square approximations |
publishDate |
2002 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00361429_v39_n1_p38_Armentano http://hdl.handle.net/20.500.12110/paper_00361429_v39_n1_p38_Armentano |
work_keys_str_mv |
AT armentanomariagabriela errorestimatesinsobolevspacesformovingleastsquareapproximations |
_version_ |
1768544309913583616 |