Error estimates in Sobolev spaces for moving least square approximations

The aim of this paper is to obtain error estimates for moving least square (MLS) approximations in ℝN. We prove that, under appropriate hypotheses on the weight function and the distribution of points, the method produces optimal order error estimates in L∞ and L2 for the approximations of the funct...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Armentano, Maria Gabriela
Publicado: 2002
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00361429_v39_n1_p38_Armentano
http://hdl.handle.net/20.500.12110/paper_00361429_v39_n1_p38_Armentano
Aporte de:
id paper:paper_00361429_v39_n1_p38_Armentano
record_format dspace
spelling paper:paper_00361429_v39_n1_p38_Armentano2023-06-08T15:01:58Z Error estimates in Sobolev spaces for moving least square approximations Armentano, Maria Gabriela Error estimates Meshless method Moving least square The aim of this paper is to obtain error estimates for moving least square (MLS) approximations in ℝN. We prove that, under appropriate hypotheses on the weight function and the distribution of points, the method produces optimal order error estimates in L∞ and L2 for the approximations of the function and its first derivatives. These estimates are important in the analysis of Galerkin approximations based on the MLS method. In particular, our results provide error estimates, optimal in order and regularity, for second order coercive problems. Fil:Armentano, M.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2002 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00361429_v39_n1_p38_Armentano http://hdl.handle.net/20.500.12110/paper_00361429_v39_n1_p38_Armentano
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Error estimates
Meshless method
Moving least square
spellingShingle Error estimates
Meshless method
Moving least square
Armentano, Maria Gabriela
Error estimates in Sobolev spaces for moving least square approximations
topic_facet Error estimates
Meshless method
Moving least square
description The aim of this paper is to obtain error estimates for moving least square (MLS) approximations in ℝN. We prove that, under appropriate hypotheses on the weight function and the distribution of points, the method produces optimal order error estimates in L∞ and L2 for the approximations of the function and its first derivatives. These estimates are important in the analysis of Galerkin approximations based on the MLS method. In particular, our results provide error estimates, optimal in order and regularity, for second order coercive problems.
author Armentano, Maria Gabriela
author_facet Armentano, Maria Gabriela
author_sort Armentano, Maria Gabriela
title Error estimates in Sobolev spaces for moving least square approximations
title_short Error estimates in Sobolev spaces for moving least square approximations
title_full Error estimates in Sobolev spaces for moving least square approximations
title_fullStr Error estimates in Sobolev spaces for moving least square approximations
title_full_unstemmed Error estimates in Sobolev spaces for moving least square approximations
title_sort error estimates in sobolev spaces for moving least square approximations
publishDate 2002
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00361429_v39_n1_p38_Armentano
http://hdl.handle.net/20.500.12110/paper_00361429_v39_n1_p38_Armentano
work_keys_str_mv AT armentanomariagabriela errorestimatesinsobolevspacesformovingleastsquareapproximations
_version_ 1768544309913583616