A nonlocal p-laplacian evolution equation with nonhomogeneous dirichlet boundary conditions

In this paper we study the nonlocal p-Laplacian- type diffusion equation ut(t,x) = ∫RN J(x-y)|u(t, y) -u(t,x)| p-2(u(t, y) -u(t,x)) dy, (t, x) ∈]0,T[×ω, with u(t, x) = ψ(x) for (t, x) ∈ ]0,T[×(RN\\ω). If p > 1, this is the nonlocal analogous problem to the well-known local p- Laplacian evolut...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Rossi, Julio Daniel
Publicado: 2009
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00361410_v40_n5_p1815_Andreu
http://hdl.handle.net/20.500.12110/paper_00361410_v40_n5_p1815_Andreu
Aporte de:
Descripción
Sumario:In this paper we study the nonlocal p-Laplacian- type diffusion equation ut(t,x) = ∫RN J(x-y)|u(t, y) -u(t,x)| p-2(u(t, y) -u(t,x)) dy, (t, x) ∈]0,T[×ω, with u(t, x) = ψ(x) for (t, x) ∈ ]0,T[×(RN\\ω). If p > 1, this is the nonlocal analogous problem to the well-known local p- Laplacian evolution equation ut = div(| δu|p-2 δu) with Dirichlet boundary condition u(t, x) =ψ(x) on (t, x) ∈ ]0,T[×∂ω. If p = 1, this is the nonlocal analogous to the total variation flow. When p = +∞ (this has to be interpreted as the limit as p → +∞ in the previous model) we find an evolution problem that can be seen as a nonlocal model for the formation of sandpiles (here u(t,x) stands for the height of the sandpile) with prescribed height of sand outside of ω. We prove, as main results, existence, uniqueness, a contraction property that gives well posedness of the problem, and the convergence of the solutions to solutions of the local analogous problem when a rescaling parameter goes to zero. © 2009 Society for Industrial and Applied Mathematics.