A nonlocal p-laplacian evolution equation with nonhomogeneous dirichlet boundary conditions

In this paper we study the nonlocal p-Laplacian- type diffusion equation ut(t,x) = ∫RN J(x-y)|u(t, y) -u(t,x)| p-2(u(t, y) -u(t,x)) dy, (t, x) ∈]0,T[×ω, with u(t, x) = ψ(x) for (t, x) ∈ ]0,T[×(RN\\ω). If p > 1, this is the nonlocal analogous problem to the well-known local p- Laplacian evolut...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Rossi, Julio Daniel
Publicado: 2009
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00361410_v40_n5_p1815_Andreu
http://hdl.handle.net/20.500.12110/paper_00361410_v40_n5_p1815_Andreu
Aporte de:
id paper:paper_00361410_v40_n5_p1815_Andreu
record_format dspace
spelling paper:paper_00361410_v40_n5_p1815_Andreu2023-06-08T15:01:54Z A nonlocal p-laplacian evolution equation with nonhomogeneous dirichlet boundary conditions Rossi, Julio Daniel Nonhomogeneous Dirichlet boundary conditions Nonlocal diffusion P-Laplacian Sandpiles Total variation flow Nonhomogeneous Dirichlet boundary conditions Nonlocal diffusion P-Laplacian Sandpiles Total variation flow Boundary conditions Diffusion Laplace transforms Sand In this paper we study the nonlocal p-Laplacian- type diffusion equation ut(t,x) = ∫RN J(x-y)|u(t, y) -u(t,x)| p-2(u(t, y) -u(t,x)) dy, (t, x) ∈]0,T[×ω, with u(t, x) = ψ(x) for (t, x) ∈ ]0,T[×(RN\\ω). If p > 1, this is the nonlocal analogous problem to the well-known local p- Laplacian evolution equation ut = div(| δu|p-2 δu) with Dirichlet boundary condition u(t, x) =ψ(x) on (t, x) ∈ ]0,T[×∂ω. If p = 1, this is the nonlocal analogous to the total variation flow. When p = +∞ (this has to be interpreted as the limit as p → +∞ in the previous model) we find an evolution problem that can be seen as a nonlocal model for the formation of sandpiles (here u(t,x) stands for the height of the sandpile) with prescribed height of sand outside of ω. We prove, as main results, existence, uniqueness, a contraction property that gives well posedness of the problem, and the convergence of the solutions to solutions of the local analogous problem when a rescaling parameter goes to zero. © 2009 Society for Industrial and Applied Mathematics. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2009 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00361410_v40_n5_p1815_Andreu http://hdl.handle.net/20.500.12110/paper_00361410_v40_n5_p1815_Andreu
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Nonhomogeneous Dirichlet boundary conditions
Nonlocal diffusion
P-Laplacian
Sandpiles
Total variation flow
Nonhomogeneous Dirichlet boundary conditions
Nonlocal diffusion
P-Laplacian
Sandpiles
Total variation flow
Boundary conditions
Diffusion
Laplace transforms
Sand
spellingShingle Nonhomogeneous Dirichlet boundary conditions
Nonlocal diffusion
P-Laplacian
Sandpiles
Total variation flow
Nonhomogeneous Dirichlet boundary conditions
Nonlocal diffusion
P-Laplacian
Sandpiles
Total variation flow
Boundary conditions
Diffusion
Laplace transforms
Sand
Rossi, Julio Daniel
A nonlocal p-laplacian evolution equation with nonhomogeneous dirichlet boundary conditions
topic_facet Nonhomogeneous Dirichlet boundary conditions
Nonlocal diffusion
P-Laplacian
Sandpiles
Total variation flow
Nonhomogeneous Dirichlet boundary conditions
Nonlocal diffusion
P-Laplacian
Sandpiles
Total variation flow
Boundary conditions
Diffusion
Laplace transforms
Sand
description In this paper we study the nonlocal p-Laplacian- type diffusion equation ut(t,x) = ∫RN J(x-y)|u(t, y) -u(t,x)| p-2(u(t, y) -u(t,x)) dy, (t, x) ∈]0,T[×ω, with u(t, x) = ψ(x) for (t, x) ∈ ]0,T[×(RN\\ω). If p > 1, this is the nonlocal analogous problem to the well-known local p- Laplacian evolution equation ut = div(| δu|p-2 δu) with Dirichlet boundary condition u(t, x) =ψ(x) on (t, x) ∈ ]0,T[×∂ω. If p = 1, this is the nonlocal analogous to the total variation flow. When p = +∞ (this has to be interpreted as the limit as p → +∞ in the previous model) we find an evolution problem that can be seen as a nonlocal model for the formation of sandpiles (here u(t,x) stands for the height of the sandpile) with prescribed height of sand outside of ω. We prove, as main results, existence, uniqueness, a contraction property that gives well posedness of the problem, and the convergence of the solutions to solutions of the local analogous problem when a rescaling parameter goes to zero. © 2009 Society for Industrial and Applied Mathematics.
author Rossi, Julio Daniel
author_facet Rossi, Julio Daniel
author_sort Rossi, Julio Daniel
title A nonlocal p-laplacian evolution equation with nonhomogeneous dirichlet boundary conditions
title_short A nonlocal p-laplacian evolution equation with nonhomogeneous dirichlet boundary conditions
title_full A nonlocal p-laplacian evolution equation with nonhomogeneous dirichlet boundary conditions
title_fullStr A nonlocal p-laplacian evolution equation with nonhomogeneous dirichlet boundary conditions
title_full_unstemmed A nonlocal p-laplacian evolution equation with nonhomogeneous dirichlet boundary conditions
title_sort nonlocal p-laplacian evolution equation with nonhomogeneous dirichlet boundary conditions
publishDate 2009
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00361410_v40_n5_p1815_Andreu
http://hdl.handle.net/20.500.12110/paper_00361410_v40_n5_p1815_Andreu
work_keys_str_mv AT rossijuliodaniel anonlocalplaplacianevolutionequationwithnonhomogeneousdirichletboundaryconditions
AT rossijuliodaniel nonlocalplaplacianevolutionequationwithnonhomogeneousdirichletboundaryconditions
_version_ 1768541741991854080