Spectral sets as Banach manifolds
Let A be a commutative Banach algebra, X its spectrum, and M a closed analytic submanifold of an open set in Cn. We may consider the set of germs of holomorphic functions from X to M, O(X, M). Now let v be the functional calculus homomorphism from O(X, Cn) to An, and AM = v(O(X, M)). It is proven th...
Guardado en:
| Autores principales: | , |
|---|---|
| Publicado: |
1985
|
| Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00308730_v120_n2_p401_Larotonda http://hdl.handle.net/20.500.12110/paper_00308730_v120_n2_p401_Larotonda |
| Aporte de: |
| id |
paper:paper_00308730_v120_n2_p401_Larotonda |
|---|---|
| record_format |
dspace |
| spelling |
paper:paper_00308730_v120_n2_p401_Larotonda2025-07-30T17:37:57Z Spectral sets as Banach manifolds Larotonda, Angel Rafael Zalduendo, Ignacio Martín Let A be a commutative Banach algebra, X its spectrum, and M a closed analytic submanifold of an open set in Cn. We may consider the set of germs of holomorphic functions from X to M, O(X, M). Now let v be the functional calculus homomorphism from O(X, Cn) to An, and AM = v(O(X, M)). It is proven that AM is an analytic submanifold of An, modeled on protective A-modules of rank = dim M. © 1985 by Pacific Journal of Mathematics. Fil:Larotonda, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Zalduendo, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 1985 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00308730_v120_n2_p401_Larotonda http://hdl.handle.net/20.500.12110/paper_00308730_v120_n2_p401_Larotonda |
| institution |
Universidad de Buenos Aires |
| institution_str |
I-28 |
| repository_str |
R-134 |
| collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
| description |
Let A be a commutative Banach algebra, X its spectrum, and M a closed analytic submanifold of an open set in Cn. We may consider the set of germs of holomorphic functions from X to M, O(X, M). Now let v be the functional calculus homomorphism from O(X, Cn) to An, and AM = v(O(X, M)). It is proven that AM is an analytic submanifold of An, modeled on protective A-modules of rank = dim M. © 1985 by Pacific Journal of Mathematics. |
| author |
Larotonda, Angel Rafael Zalduendo, Ignacio Martín |
| spellingShingle |
Larotonda, Angel Rafael Zalduendo, Ignacio Martín Spectral sets as Banach manifolds |
| author_facet |
Larotonda, Angel Rafael Zalduendo, Ignacio Martín |
| author_sort |
Larotonda, Angel Rafael |
| title |
Spectral sets as Banach manifolds |
| title_short |
Spectral sets as Banach manifolds |
| title_full |
Spectral sets as Banach manifolds |
| title_fullStr |
Spectral sets as Banach manifolds |
| title_full_unstemmed |
Spectral sets as Banach manifolds |
| title_sort |
spectral sets as banach manifolds |
| publishDate |
1985 |
| url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00308730_v120_n2_p401_Larotonda http://hdl.handle.net/20.500.12110/paper_00308730_v120_n2_p401_Larotonda |
| work_keys_str_mv |
AT larotondaangelrafael spectralsetsasbanachmanifolds AT zalduendoignaciomartin spectralsetsasbanachmanifolds |
| _version_ |
1840325856862404608 |