Finite element solution of incompressible fluid-structure vibration problems

In this paper we solve an eigenvalue problem arising from the computation of the vibrations of a coupled system, incompressible fluid - elastic structure, in absence of external forces. We use displacement variables for both the solid and the fluid but the fluid displacements are written as curls of...

Descripción completa

Detalles Bibliográficos
Autor principal: Duran, Ricardo Guillermo
Publicado: 1997
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00295981_v40_n8_p1435_Bermudez
http://hdl.handle.net/20.500.12110/paper_00295981_v40_n8_p1435_Bermudez
Aporte de:
id paper:paper_00295981_v40_n8_p1435_Bermudez
record_format dspace
spelling paper:paper_00295981_v40_n8_p1435_Bermudez2023-06-08T14:55:27Z Finite element solution of incompressible fluid-structure vibration problems Duran, Ricardo Guillermo Finite elements Fluid-structure Hydroelasticity Spectral problems Spurious modes Vibrations Eigenvalues and eigenfunctions Elasticity Finite element method Kinematics Lagrange multipliers Phase interfaces Spectrum analysis Vibrations (mechanical) Displacement variables Fluid solid interface Incompressible fluid elastic structure Linear triangular finite elements Fluid structure interaction finite element method incompressible fluids stream functions In this paper we solve an eigenvalue problem arising from the computation of the vibrations of a coupled system, incompressible fluid - elastic structure, in absence of external forces. We use displacement variables for both the solid and the fluid but the fluid displacements are written as curls of a stream function. Classical linear triangular finite elements are used for the solid displacements and for the stream function in the fluid. The kinematic transmission conditions at the fluid-solid interface are taken into account in a weak sense by means of a Lagrange multiplier. The method does not present spurious or circulation modes for non-zero frequencies. Numerical results are given for some test cases. © 1997 by John Wiley & Sons, Ltd. Fil:Durán, R. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 1997 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00295981_v40_n8_p1435_Bermudez http://hdl.handle.net/20.500.12110/paper_00295981_v40_n8_p1435_Bermudez
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Finite elements
Fluid-structure
Hydroelasticity
Spectral problems
Spurious modes
Vibrations
Eigenvalues and eigenfunctions
Elasticity
Finite element method
Kinematics
Lagrange multipliers
Phase interfaces
Spectrum analysis
Vibrations (mechanical)
Displacement variables
Fluid solid interface
Incompressible fluid elastic structure
Linear triangular finite elements
Fluid structure interaction
finite element method
incompressible fluids
stream functions
spellingShingle Finite elements
Fluid-structure
Hydroelasticity
Spectral problems
Spurious modes
Vibrations
Eigenvalues and eigenfunctions
Elasticity
Finite element method
Kinematics
Lagrange multipliers
Phase interfaces
Spectrum analysis
Vibrations (mechanical)
Displacement variables
Fluid solid interface
Incompressible fluid elastic structure
Linear triangular finite elements
Fluid structure interaction
finite element method
incompressible fluids
stream functions
Duran, Ricardo Guillermo
Finite element solution of incompressible fluid-structure vibration problems
topic_facet Finite elements
Fluid-structure
Hydroelasticity
Spectral problems
Spurious modes
Vibrations
Eigenvalues and eigenfunctions
Elasticity
Finite element method
Kinematics
Lagrange multipliers
Phase interfaces
Spectrum analysis
Vibrations (mechanical)
Displacement variables
Fluid solid interface
Incompressible fluid elastic structure
Linear triangular finite elements
Fluid structure interaction
finite element method
incompressible fluids
stream functions
description In this paper we solve an eigenvalue problem arising from the computation of the vibrations of a coupled system, incompressible fluid - elastic structure, in absence of external forces. We use displacement variables for both the solid and the fluid but the fluid displacements are written as curls of a stream function. Classical linear triangular finite elements are used for the solid displacements and for the stream function in the fluid. The kinematic transmission conditions at the fluid-solid interface are taken into account in a weak sense by means of a Lagrange multiplier. The method does not present spurious or circulation modes for non-zero frequencies. Numerical results are given for some test cases. © 1997 by John Wiley & Sons, Ltd.
author Duran, Ricardo Guillermo
author_facet Duran, Ricardo Guillermo
author_sort Duran, Ricardo Guillermo
title Finite element solution of incompressible fluid-structure vibration problems
title_short Finite element solution of incompressible fluid-structure vibration problems
title_full Finite element solution of incompressible fluid-structure vibration problems
title_fullStr Finite element solution of incompressible fluid-structure vibration problems
title_full_unstemmed Finite element solution of incompressible fluid-structure vibration problems
title_sort finite element solution of incompressible fluid-structure vibration problems
publishDate 1997
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00295981_v40_n8_p1435_Bermudez
http://hdl.handle.net/20.500.12110/paper_00295981_v40_n8_p1435_Bermudez
work_keys_str_mv AT duranricardoguillermo finiteelementsolutionofincompressiblefluidstructurevibrationproblems
_version_ 1768543981001506816