Parameter estimation using ensemble-based data assimilation in the presence of model error

This work explores the potential of online parameter estimation as a technique for model error treatment under an imperfect model scenario, in an ensemble-based data assimilation system, using a simple atmospheric general circulation model, and an observing system simulation experiment (OSSE) approa...

Descripción completa

Detalles Bibliográficos
Autor principal: Ruiz, Juan Jose
Publicado: 2015
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00270644_v143_n5_p1568_Ruiz
http://hdl.handle.net/20.500.12110/paper_00270644_v143_n5_p1568_Ruiz
Aporte de:
id paper:paper_00270644_v143_n5_p1568_Ruiz
record_format dspace
spelling paper:paper_00270644_v143_n5_p1568_Ruiz2023-06-08T14:54:09Z Parameter estimation using ensemble-based data assimilation in the presence of model error Ruiz, Juan Jose Bias Data assimilation Kalman filters Model errors Numerical weather prediction/forecasting Optimization Earth atmosphere Errors Forecasting Kalman filters Optimization Quality control Weather forecasting Atmospheric general circulation models Bias Data assimilation Ensemble based data assimilation Model errors Numerical weather prediction/forecasting Observing system simulation experiments On-line parameter estimations Parameter estimation atmospheric general circulation model data assimilation ensemble forecasting error analysis Kalman filter numerical model optimization weather forecasting This work explores the potential of online parameter estimation as a technique for model error treatment under an imperfect model scenario, in an ensemble-based data assimilation system, using a simple atmospheric general circulation model, and an observing system simulation experiment (OSSE) approach. Model error is introduced in the imperfect model scenario by changing the value of the parameters associated with different schemes. The parameters of the moist convection scheme are the only ones to be estimated in the data assimilation system. In this work, parameter estimation is compared and combined with techniques that account for the lack of ensemble spread and for the systematic model error. The OSSEs show that when parameter estimation is combined with model error treatment techniques, multiplicative and additive inflation or a bias correction technique, parameter estimation produces a further improvement of analysis quality and medium-range forecast skill with respect to the OSSEs with model error treatment techniques without parameter estimation. The improvement produced by parameter estimation is mainly a consequence of the optimization of the parameter values. The estimated parameters do not converge to the value used to generate the observations in the imperfect model scenario; however, the analysis error is reduced and the forecast skill is improved. © 2015 American Meteorological Society. Fil:Ruiz, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2015 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00270644_v143_n5_p1568_Ruiz http://hdl.handle.net/20.500.12110/paper_00270644_v143_n5_p1568_Ruiz
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Bias
Data assimilation
Kalman filters
Model errors
Numerical weather prediction/forecasting
Optimization
Earth atmosphere
Errors
Forecasting
Kalman filters
Optimization
Quality control
Weather forecasting
Atmospheric general circulation models
Bias
Data assimilation
Ensemble based data assimilation
Model errors
Numerical weather prediction/forecasting
Observing system simulation experiments
On-line parameter estimations
Parameter estimation
atmospheric general circulation model
data assimilation
ensemble forecasting
error analysis
Kalman filter
numerical model
optimization
weather forecasting
spellingShingle Bias
Data assimilation
Kalman filters
Model errors
Numerical weather prediction/forecasting
Optimization
Earth atmosphere
Errors
Forecasting
Kalman filters
Optimization
Quality control
Weather forecasting
Atmospheric general circulation models
Bias
Data assimilation
Ensemble based data assimilation
Model errors
Numerical weather prediction/forecasting
Observing system simulation experiments
On-line parameter estimations
Parameter estimation
atmospheric general circulation model
data assimilation
ensemble forecasting
error analysis
Kalman filter
numerical model
optimization
weather forecasting
Ruiz, Juan Jose
Parameter estimation using ensemble-based data assimilation in the presence of model error
topic_facet Bias
Data assimilation
Kalman filters
Model errors
Numerical weather prediction/forecasting
Optimization
Earth atmosphere
Errors
Forecasting
Kalman filters
Optimization
Quality control
Weather forecasting
Atmospheric general circulation models
Bias
Data assimilation
Ensemble based data assimilation
Model errors
Numerical weather prediction/forecasting
Observing system simulation experiments
On-line parameter estimations
Parameter estimation
atmospheric general circulation model
data assimilation
ensemble forecasting
error analysis
Kalman filter
numerical model
optimization
weather forecasting
description This work explores the potential of online parameter estimation as a technique for model error treatment under an imperfect model scenario, in an ensemble-based data assimilation system, using a simple atmospheric general circulation model, and an observing system simulation experiment (OSSE) approach. Model error is introduced in the imperfect model scenario by changing the value of the parameters associated with different schemes. The parameters of the moist convection scheme are the only ones to be estimated in the data assimilation system. In this work, parameter estimation is compared and combined with techniques that account for the lack of ensemble spread and for the systematic model error. The OSSEs show that when parameter estimation is combined with model error treatment techniques, multiplicative and additive inflation or a bias correction technique, parameter estimation produces a further improvement of analysis quality and medium-range forecast skill with respect to the OSSEs with model error treatment techniques without parameter estimation. The improvement produced by parameter estimation is mainly a consequence of the optimization of the parameter values. The estimated parameters do not converge to the value used to generate the observations in the imperfect model scenario; however, the analysis error is reduced and the forecast skill is improved. © 2015 American Meteorological Society.
author Ruiz, Juan Jose
author_facet Ruiz, Juan Jose
author_sort Ruiz, Juan Jose
title Parameter estimation using ensemble-based data assimilation in the presence of model error
title_short Parameter estimation using ensemble-based data assimilation in the presence of model error
title_full Parameter estimation using ensemble-based data assimilation in the presence of model error
title_fullStr Parameter estimation using ensemble-based data assimilation in the presence of model error
title_full_unstemmed Parameter estimation using ensemble-based data assimilation in the presence of model error
title_sort parameter estimation using ensemble-based data assimilation in the presence of model error
publishDate 2015
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00270644_v143_n5_p1568_Ruiz
http://hdl.handle.net/20.500.12110/paper_00270644_v143_n5_p1568_Ruiz
work_keys_str_mv AT ruizjuanjose parameterestimationusingensemblebaseddataassimilationinthepresenceofmodelerror
_version_ 1768543980419547136