Subresultants in multiple roots: An extremal case

We provide explicit formulae for the coefficients of the order-d polynomial subresultant of (x−α)m and (x−β)n with respect to the set of Bernstein polynomials {(x−α)j(x−β)d−j,0≤j≤d}. They are given by hypergeometric expressions arising from determinants of binomial Hankel matrices. © 2017 Elsevier I...

Descripción completa

Detalles Bibliográficos
Autores principales: D'Andrea, Carlos Antonio, Krick, Teresa Elena Genoveva
Publicado: 2017
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00243795_v529_n_p185_Bostan
http://hdl.handle.net/20.500.12110/paper_00243795_v529_n_p185_Bostan
Aporte de:
id paper:paper_00243795_v529_n_p185_Bostan
record_format dspace
spelling paper:paper_00243795_v529_n_p185_Bostan2023-06-08T14:52:09Z Subresultants in multiple roots: An extremal case D'Andrea, Carlos Antonio Krick, Teresa Elena Genoveva Hankel matrices Ostrowski's determinant Pfaff–Saalschütz identity Subresultants Linear algebra Mathematical techniques Bernstein polynomial Explicit formula Extremal Hankel matrix Hypergeometric Multiple roots Ostrowski Subresultants Matrix algebra We provide explicit formulae for the coefficients of the order-d polynomial subresultant of (x−α)m and (x−β)n with respect to the set of Bernstein polynomials {(x−α)j(x−β)d−j,0≤j≤d}. They are given by hypergeometric expressions arising from determinants of binomial Hankel matrices. © 2017 Elsevier Inc. Fil:D'Andrea, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2017 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00243795_v529_n_p185_Bostan http://hdl.handle.net/20.500.12110/paper_00243795_v529_n_p185_Bostan
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Hankel matrices
Ostrowski's determinant
Pfaff–Saalschütz identity
Subresultants
Linear algebra
Mathematical techniques
Bernstein polynomial
Explicit formula
Extremal
Hankel matrix
Hypergeometric
Multiple roots
Ostrowski
Subresultants
Matrix algebra
spellingShingle Hankel matrices
Ostrowski's determinant
Pfaff–Saalschütz identity
Subresultants
Linear algebra
Mathematical techniques
Bernstein polynomial
Explicit formula
Extremal
Hankel matrix
Hypergeometric
Multiple roots
Ostrowski
Subresultants
Matrix algebra
D'Andrea, Carlos Antonio
Krick, Teresa Elena Genoveva
Subresultants in multiple roots: An extremal case
topic_facet Hankel matrices
Ostrowski's determinant
Pfaff–Saalschütz identity
Subresultants
Linear algebra
Mathematical techniques
Bernstein polynomial
Explicit formula
Extremal
Hankel matrix
Hypergeometric
Multiple roots
Ostrowski
Subresultants
Matrix algebra
description We provide explicit formulae for the coefficients of the order-d polynomial subresultant of (x−α)m and (x−β)n with respect to the set of Bernstein polynomials {(x−α)j(x−β)d−j,0≤j≤d}. They are given by hypergeometric expressions arising from determinants of binomial Hankel matrices. © 2017 Elsevier Inc.
author D'Andrea, Carlos Antonio
Krick, Teresa Elena Genoveva
author_facet D'Andrea, Carlos Antonio
Krick, Teresa Elena Genoveva
author_sort D'Andrea, Carlos Antonio
title Subresultants in multiple roots: An extremal case
title_short Subresultants in multiple roots: An extremal case
title_full Subresultants in multiple roots: An extremal case
title_fullStr Subresultants in multiple roots: An extremal case
title_full_unstemmed Subresultants in multiple roots: An extremal case
title_sort subresultants in multiple roots: an extremal case
publishDate 2017
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00243795_v529_n_p185_Bostan
http://hdl.handle.net/20.500.12110/paper_00243795_v529_n_p185_Bostan
work_keys_str_mv AT dandreacarlosantonio subresultantsinmultiplerootsanextremalcase
AT krickteresaelenagenoveva subresultantsinmultiplerootsanextremalcase
_version_ 1768543456187121664