Scaling Limits and Generic Bounds for Exploration Processes

We consider exploration algorithms of the random sequential adsorption type both for homogeneous random graphs and random geometric graphs based on spatial Poisson processes. At each step, a vertex of the graph becomes active and its neighboring nodes become blocked. Given an initial number of verti...

Descripción completa

Guardado en:
Detalles Bibliográficos
Publicado: 2017
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00224715_v169_n5_p989_Bermolen
http://hdl.handle.net/20.500.12110/paper_00224715_v169_n5_p989_Bermolen
Aporte de:
id paper:paper_00224715_v169_n5_p989_Bermolen
record_format dspace
spelling paper:paper_00224715_v169_n5_p989_Bermolen2023-06-08T14:50:56Z Scaling Limits and Generic Bounds for Exploration Processes Random graphs Random sequential adsorption Scaling limits We consider exploration algorithms of the random sequential adsorption type both for homogeneous random graphs and random geometric graphs based on spatial Poisson processes. At each step, a vertex of the graph becomes active and its neighboring nodes become blocked. Given an initial number of vertices N growing to infinity, we study statistical properties of the proportion of explored (active or blocked) nodes in time using scaling limits. We obtain exact limits for homogeneous graphs and prove an explicit central limit theorem for the final proportion of active nodes, known as the jamming constant, through a diffusion approximation for the exploration process which can be described as a unidimensional process. We then focus on bounding the trajectories of such exploration processes on random geometric graphs, i.e., random sequential adsorption. As opposed to exploration processes on homogeneous random graphs, these do not allow for such a dimensional reduction. Instead we derive a fundamental relationship between the number of explored nodes and the discovered volume in the spatial process, and we obtain generic bounds for the fluid limit and jamming constant: bounds that are independent of the dimension of space and the detailed shape of the volume associated to the discovered node. Lastly, using coupling techinques, we give trajectorial interpretations of the generic bounds. © 2017, Springer Science+Business Media, LLC. 2017 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00224715_v169_n5_p989_Bermolen http://hdl.handle.net/20.500.12110/paper_00224715_v169_n5_p989_Bermolen
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Random graphs
Random sequential adsorption
Scaling limits
spellingShingle Random graphs
Random sequential adsorption
Scaling limits
Scaling Limits and Generic Bounds for Exploration Processes
topic_facet Random graphs
Random sequential adsorption
Scaling limits
description We consider exploration algorithms of the random sequential adsorption type both for homogeneous random graphs and random geometric graphs based on spatial Poisson processes. At each step, a vertex of the graph becomes active and its neighboring nodes become blocked. Given an initial number of vertices N growing to infinity, we study statistical properties of the proportion of explored (active or blocked) nodes in time using scaling limits. We obtain exact limits for homogeneous graphs and prove an explicit central limit theorem for the final proportion of active nodes, known as the jamming constant, through a diffusion approximation for the exploration process which can be described as a unidimensional process. We then focus on bounding the trajectories of such exploration processes on random geometric graphs, i.e., random sequential adsorption. As opposed to exploration processes on homogeneous random graphs, these do not allow for such a dimensional reduction. Instead we derive a fundamental relationship between the number of explored nodes and the discovered volume in the spatial process, and we obtain generic bounds for the fluid limit and jamming constant: bounds that are independent of the dimension of space and the detailed shape of the volume associated to the discovered node. Lastly, using coupling techinques, we give trajectorial interpretations of the generic bounds. © 2017, Springer Science+Business Media, LLC.
title Scaling Limits and Generic Bounds for Exploration Processes
title_short Scaling Limits and Generic Bounds for Exploration Processes
title_full Scaling Limits and Generic Bounds for Exploration Processes
title_fullStr Scaling Limits and Generic Bounds for Exploration Processes
title_full_unstemmed Scaling Limits and Generic Bounds for Exploration Processes
title_sort scaling limits and generic bounds for exploration processes
publishDate 2017
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00224715_v169_n5_p989_Bermolen
http://hdl.handle.net/20.500.12110/paper_00224715_v169_n5_p989_Bermolen
_version_ 1768544899115778048