Carbon-Carbon Bond Formation through the Carbonylation of Lithium Dialkylamides. One-Pot Synthesis of N-Alkyl-Substituted Formamides, Glyoxylamides, and Hydroxymalonamides
The reaction of lithium dialkylamides 1 (dialkyl = dibutyl, dipentyl, dicyclohexyl, 3-oxapentamethylene, and isopropyl cyclohexyl) with carbon monoxide was examined under several reaction conditions. It is shown that the corresponding lithium carbamoyl is the first intermediate and its further react...
Autor principal: | |
---|---|
Publicado: |
1988
|
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00223263_v53_n2_p408_Perez http://hdl.handle.net/20.500.12110/paper_00223263_v53_n2_p408_Perez |
Aporte de: |
id |
paper:paper_00223263_v53_n2_p408_Perez |
---|---|
record_format |
dspace |
spelling |
paper:paper_00223263_v53_n2_p408_Perez2023-06-08T14:49:27Z Carbon-Carbon Bond Formation through the Carbonylation of Lithium Dialkylamides. One-Pot Synthesis of N-Alkyl-Substituted Formamides, Glyoxylamides, and Hydroxymalonamides Perez, Daniel Gustavo The reaction of lithium dialkylamides 1 (dialkyl = dibutyl, dipentyl, dicyclohexyl, 3-oxapentamethylene, and isopropyl cyclohexyl) with carbon monoxide was examined under several reaction conditions. It is shown that the corresponding lithium carbamoyl is the first intermediate and its further reactions can lead to dialkylformamides 2, dialkylglyoxylamides 3, or tetraalkylhydroxymalonamides 4. Dialkylamides were previously assumed to come from hydrolysis of lithium carbamoyls, and these represent an unexplained “island of stability” among the area of acyl anions. Evidence is given that casts doubts on this assumption and suggests that 2 comes from the cleavage of lithium tetraalkylurea dianion. The yields of 2, 3, or 4 obtained by this one-step, rapid procedure are much higher than those afforded by the usual several steps methods of preparation, especially for compounds 3 and 4. Tetraalkylureas, tetraalkyloxalamines, or tetraalkylketomalonamides can be obtained in good yield by the same general procedure, followed by treatment of the reaction mixture with oxygen after the carbon monoxide absorption has ceased and before the regular workup. © 1988, American Chemical Society. All rights reserved. Fil:Pérez, D.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 1988 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00223263_v53_n2_p408_Perez http://hdl.handle.net/20.500.12110/paper_00223263_v53_n2_p408_Perez |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
The reaction of lithium dialkylamides 1 (dialkyl = dibutyl, dipentyl, dicyclohexyl, 3-oxapentamethylene, and isopropyl cyclohexyl) with carbon monoxide was examined under several reaction conditions. It is shown that the corresponding lithium carbamoyl is the first intermediate and its further reactions can lead to dialkylformamides 2, dialkylglyoxylamides 3, or tetraalkylhydroxymalonamides 4. Dialkylamides were previously assumed to come from hydrolysis of lithium carbamoyls, and these represent an unexplained “island of stability” among the area of acyl anions. Evidence is given that casts doubts on this assumption and suggests that 2 comes from the cleavage of lithium tetraalkylurea dianion. The yields of 2, 3, or 4 obtained by this one-step, rapid procedure are much higher than those afforded by the usual several steps methods of preparation, especially for compounds 3 and 4. Tetraalkylureas, tetraalkyloxalamines, or tetraalkylketomalonamides can be obtained in good yield by the same general procedure, followed by treatment of the reaction mixture with oxygen after the carbon monoxide absorption has ceased and before the regular workup. © 1988, American Chemical Society. All rights reserved. |
author |
Perez, Daniel Gustavo |
spellingShingle |
Perez, Daniel Gustavo Carbon-Carbon Bond Formation through the Carbonylation of Lithium Dialkylamides. One-Pot Synthesis of N-Alkyl-Substituted Formamides, Glyoxylamides, and Hydroxymalonamides |
author_facet |
Perez, Daniel Gustavo |
author_sort |
Perez, Daniel Gustavo |
title |
Carbon-Carbon Bond Formation through the Carbonylation of Lithium Dialkylamides. One-Pot Synthesis of N-Alkyl-Substituted Formamides, Glyoxylamides, and Hydroxymalonamides |
title_short |
Carbon-Carbon Bond Formation through the Carbonylation of Lithium Dialkylamides. One-Pot Synthesis of N-Alkyl-Substituted Formamides, Glyoxylamides, and Hydroxymalonamides |
title_full |
Carbon-Carbon Bond Formation through the Carbonylation of Lithium Dialkylamides. One-Pot Synthesis of N-Alkyl-Substituted Formamides, Glyoxylamides, and Hydroxymalonamides |
title_fullStr |
Carbon-Carbon Bond Formation through the Carbonylation of Lithium Dialkylamides. One-Pot Synthesis of N-Alkyl-Substituted Formamides, Glyoxylamides, and Hydroxymalonamides |
title_full_unstemmed |
Carbon-Carbon Bond Formation through the Carbonylation of Lithium Dialkylamides. One-Pot Synthesis of N-Alkyl-Substituted Formamides, Glyoxylamides, and Hydroxymalonamides |
title_sort |
carbon-carbon bond formation through the carbonylation of lithium dialkylamides. one-pot synthesis of n-alkyl-substituted formamides, glyoxylamides, and hydroxymalonamides |
publishDate |
1988 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00223263_v53_n2_p408_Perez http://hdl.handle.net/20.500.12110/paper_00223263_v53_n2_p408_Perez |
work_keys_str_mv |
AT perezdanielgustavo carboncarbonbondformationthroughthecarbonylationoflithiumdialkylamidesonepotsynthesisofnalkylsubstitutedformamidesglyoxylamidesandhydroxymalonamides |
_version_ |
1768546617314508800 |