Exploring the intrinsic limits of nitrogenase transfer from bacteria to eukaryotes

Biological nitrogen fixation is widespread among the Eubacteria and Archae domains but completely absent in eukaryotes. The lack of lateral transfer of nitrogen-fixation genes from prokaryotes to eukaryotes has been partially attributed to the physiological requirements necessary for the function of...

Descripción completa

Detalles Bibliográficos
Publicado: 2013
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00222844_v77_n1-2_p3_Soto
http://hdl.handle.net/20.500.12110/paper_00222844_v77_n1-2_p3_Soto
Aporte de:
id paper:paper_00222844_v77_n1-2_p3_Soto
record_format dspace
spelling paper:paper_00222844_v77_n1-2_p3_Soto2023-06-08T14:48:48Z Exploring the intrinsic limits of nitrogenase transfer from bacteria to eukaryotes Bacteria Eukaryotes Evolution Lateral transfer Nitrogen fixation Oxygen Bacteria (microorganisms) Eukaryota Medicago sativa Prokaryota Rhizobium Sinorhizobium meliloti nitrogenase alfalfa article bacterium classification eukaryote gene expression regulation genetics metabolism nitrogen fixation nodulation phylogeny Sinorhizobium meliloti symbiosis Bacteria Eukaryota Gene Expression Regulation, Plant Medicago sativa Nitrogen Fixation Nitrogenase Phylogeny Plant Root Nodulation Sinorhizobium meliloti Symbiosis Biological nitrogen fixation is widespread among the Eubacteria and Archae domains but completely absent in eukaryotes. The lack of lateral transfer of nitrogen-fixation genes from prokaryotes to eukaryotes has been partially attributed to the physiological requirements necessary for the function of the nitrogenase complex. However, symbiotic bacterial nitrogenase activity is protected by the nodule, a plant structure whose organogenesis can be trigged in the absence of bacteria. To explore the intrinsic potentiality of this plant organ, we generated rhizobium-independent nodules in alfalfa by overexpressing the MsDMI3 kinase lacking the autoinhibitory domain. These transgenic nodules showed similar levels of leghemoglobin, free oxygen, ATP, and NADPH to those of efficient Sinorhizobium meliloti B399-infected nodules, suggesting that the rhizobium-independent nodules can provide an optimal microenvironment for nitrogenase activity. Finally, we discuss the intrinsic evolutionary constraints on transfer of nitrogen-fixation genes between bacteria and eukaryotes. © 2013 Springer Science+Business Media New York. 2013 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00222844_v77_n1-2_p3_Soto http://hdl.handle.net/20.500.12110/paper_00222844_v77_n1-2_p3_Soto
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Bacteria
Eukaryotes
Evolution
Lateral transfer
Nitrogen fixation
Oxygen
Bacteria (microorganisms)
Eukaryota
Medicago sativa
Prokaryota
Rhizobium
Sinorhizobium meliloti
nitrogenase
alfalfa
article
bacterium
classification
eukaryote
gene expression regulation
genetics
metabolism
nitrogen fixation
nodulation
phylogeny
Sinorhizobium meliloti
symbiosis
Bacteria
Eukaryota
Gene Expression Regulation, Plant
Medicago sativa
Nitrogen Fixation
Nitrogenase
Phylogeny
Plant Root Nodulation
Sinorhizobium meliloti
Symbiosis
spellingShingle Bacteria
Eukaryotes
Evolution
Lateral transfer
Nitrogen fixation
Oxygen
Bacteria (microorganisms)
Eukaryota
Medicago sativa
Prokaryota
Rhizobium
Sinorhizobium meliloti
nitrogenase
alfalfa
article
bacterium
classification
eukaryote
gene expression regulation
genetics
metabolism
nitrogen fixation
nodulation
phylogeny
Sinorhizobium meliloti
symbiosis
Bacteria
Eukaryota
Gene Expression Regulation, Plant
Medicago sativa
Nitrogen Fixation
Nitrogenase
Phylogeny
Plant Root Nodulation
Sinorhizobium meliloti
Symbiosis
Exploring the intrinsic limits of nitrogenase transfer from bacteria to eukaryotes
topic_facet Bacteria
Eukaryotes
Evolution
Lateral transfer
Nitrogen fixation
Oxygen
Bacteria (microorganisms)
Eukaryota
Medicago sativa
Prokaryota
Rhizobium
Sinorhizobium meliloti
nitrogenase
alfalfa
article
bacterium
classification
eukaryote
gene expression regulation
genetics
metabolism
nitrogen fixation
nodulation
phylogeny
Sinorhizobium meliloti
symbiosis
Bacteria
Eukaryota
Gene Expression Regulation, Plant
Medicago sativa
Nitrogen Fixation
Nitrogenase
Phylogeny
Plant Root Nodulation
Sinorhizobium meliloti
Symbiosis
description Biological nitrogen fixation is widespread among the Eubacteria and Archae domains but completely absent in eukaryotes. The lack of lateral transfer of nitrogen-fixation genes from prokaryotes to eukaryotes has been partially attributed to the physiological requirements necessary for the function of the nitrogenase complex. However, symbiotic bacterial nitrogenase activity is protected by the nodule, a plant structure whose organogenesis can be trigged in the absence of bacteria. To explore the intrinsic potentiality of this plant organ, we generated rhizobium-independent nodules in alfalfa by overexpressing the MsDMI3 kinase lacking the autoinhibitory domain. These transgenic nodules showed similar levels of leghemoglobin, free oxygen, ATP, and NADPH to those of efficient Sinorhizobium meliloti B399-infected nodules, suggesting that the rhizobium-independent nodules can provide an optimal microenvironment for nitrogenase activity. Finally, we discuss the intrinsic evolutionary constraints on transfer of nitrogen-fixation genes between bacteria and eukaryotes. © 2013 Springer Science+Business Media New York.
title Exploring the intrinsic limits of nitrogenase transfer from bacteria to eukaryotes
title_short Exploring the intrinsic limits of nitrogenase transfer from bacteria to eukaryotes
title_full Exploring the intrinsic limits of nitrogenase transfer from bacteria to eukaryotes
title_fullStr Exploring the intrinsic limits of nitrogenase transfer from bacteria to eukaryotes
title_full_unstemmed Exploring the intrinsic limits of nitrogenase transfer from bacteria to eukaryotes
title_sort exploring the intrinsic limits of nitrogenase transfer from bacteria to eukaryotes
publishDate 2013
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00222844_v77_n1-2_p3_Soto
http://hdl.handle.net/20.500.12110/paper_00222844_v77_n1-2_p3_Soto
_version_ 1768546287786917888