A Lindenstrauss theorem for some classes of multilinear mappings

Under some natural hypotheses, we show that if a multilinear mapping belongs to some Banach multilinear ideal, then it can be approximated by multilinear mappings belonging to the same ideal all whose Arens extensions attain their norms at the same point. We prove a similar result for the class of s...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Carando, Daniel German, Lassalle, Silvia Beatriz
Publicado: 2015
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v427_n1_p248_Carando
http://hdl.handle.net/20.500.12110/paper_0022247X_v427_n1_p248_Carando
Aporte de:
id paper:paper_0022247X_v427_n1_p248_Carando
record_format dspace
spelling paper:paper_0022247X_v427_n1_p248_Carando2025-07-30T17:30:05Z A Lindenstrauss theorem for some classes of multilinear mappings Carando, Daniel German Lassalle, Silvia Beatriz Integral formula Lindenstrauss-type theorems Norm attaining multilinear mappings and polynomials Under some natural hypotheses, we show that if a multilinear mapping belongs to some Banach multilinear ideal, then it can be approximated by multilinear mappings belonging to the same ideal all whose Arens extensions attain their norms at the same point. We prove a similar result for the class of symmetric multilinear mappings. We see that the quantitative (Bollobás-type) version of these results fails in every multilinear ideal. © 2014. Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Lassalle, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2015 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v427_n1_p248_Carando http://hdl.handle.net/20.500.12110/paper_0022247X_v427_n1_p248_Carando
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Integral formula
Lindenstrauss-type theorems
Norm attaining multilinear mappings and polynomials
spellingShingle Integral formula
Lindenstrauss-type theorems
Norm attaining multilinear mappings and polynomials
Carando, Daniel German
Lassalle, Silvia Beatriz
A Lindenstrauss theorem for some classes of multilinear mappings
topic_facet Integral formula
Lindenstrauss-type theorems
Norm attaining multilinear mappings and polynomials
description Under some natural hypotheses, we show that if a multilinear mapping belongs to some Banach multilinear ideal, then it can be approximated by multilinear mappings belonging to the same ideal all whose Arens extensions attain their norms at the same point. We prove a similar result for the class of symmetric multilinear mappings. We see that the quantitative (Bollobás-type) version of these results fails in every multilinear ideal. © 2014.
author Carando, Daniel German
Lassalle, Silvia Beatriz
author_facet Carando, Daniel German
Lassalle, Silvia Beatriz
author_sort Carando, Daniel German
title A Lindenstrauss theorem for some classes of multilinear mappings
title_short A Lindenstrauss theorem for some classes of multilinear mappings
title_full A Lindenstrauss theorem for some classes of multilinear mappings
title_fullStr A Lindenstrauss theorem for some classes of multilinear mappings
title_full_unstemmed A Lindenstrauss theorem for some classes of multilinear mappings
title_sort lindenstrauss theorem for some classes of multilinear mappings
publishDate 2015
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v427_n1_p248_Carando
http://hdl.handle.net/20.500.12110/paper_0022247X_v427_n1_p248_Carando
work_keys_str_mv AT carandodanielgerman alindenstrausstheoremforsomeclassesofmultilinearmappings
AT lassallesilviabeatriz alindenstrausstheoremforsomeclassesofmultilinearmappings
AT carandodanielgerman lindenstrausstheoremforsomeclassesofmultilinearmappings
AT lassallesilviabeatriz lindenstrausstheoremforsomeclassesofmultilinearmappings
_version_ 1840325666573123584