Lower and upper bounds for the first eigenvalue of nonlocal diffusion problems in the whole space
We find lower and upper bounds for the first eigenvalue of a nonlocal diffusion operator of the form T(u)=-∫ ℝdK(x,y)(u(y)-u(x))dy. Here we consider a kernel K(x, y)=ψ(y-a(x))+ψ(x-a(y)) where ψ is a bounded, nonnegative function supported in the unit ball and a means a diffeomorphism on ℝ d. A simpl...
Guardado en:
Autor principal: | Rossi, Julio Daniel |
---|---|
Publicado: |
2012
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00220396_v252_n12_p6429_Ignat http://hdl.handle.net/20.500.12110/paper_00220396_v252_n12_p6429_Ignat |
Aporte de: |
Ejemplares similares
-
Lower and upper bounds for the first eigenvalue of nonlocal diffusion problems in the whole space
por: Ignat, L.I., et al. -
Decay estimates for a nonlocal p-Laplacian evolution problem with mixed boundary conditions
por: Rossi, Julio Daniel
Publicado: (2015) -
Maximum and antimaximum principles for some nonlocal diffusion operators
por: Rossi, Julio Daniel
Publicado: (2009) -
Decay estimates for a nonlocal p-Laplacian evolution problem with mixed boundary conditions
por: Ferreira, R., et al. -
Maximum and antimaximum principles for some nonlocal diffusion operators
por: García-Melián, J., et al.