Optimal boundary holes for the Sobolev trace constant
In this paper we study the problem of minimizing the Sobolev trace Rayleigh quotient ∥u∥W1,p(ω)p/∥u∥Lq(∂ω)p among functions that vanish in a set contained on the boundary ∂ ω of given boundary measure.We prove existence of extremals for this problem, and analyze some particular cases where informati...
Guardado en:
Autores principales: | , |
---|---|
Publicado: |
2011
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00220396_v251_n8_p2327_DelPezzo http://hdl.handle.net/20.500.12110/paper_00220396_v251_n8_p2327_DelPezzo |
Aporte de: |
id |
paper:paper_00220396_v251_n8_p2327_DelPezzo |
---|---|
record_format |
dspace |
spelling |
paper:paper_00220396_v251_n8_p2327_DelPezzo2023-06-08T14:45:11Z Optimal boundary holes for the Sobolev trace constant Del Pezzo, Leandro M. Fernandez Bonder, Julian P-Laplace operator Shape optimization Steklov eigenvalues In this paper we study the problem of minimizing the Sobolev trace Rayleigh quotient ∥u∥W1,p(ω)p/∥u∥Lq(∂ω)p among functions that vanish in a set contained on the boundary ∂ ω of given boundary measure.We prove existence of extremals for this problem, and analyze some particular cases where information about the location of the optimal boundary set can be given. Moreover, we further study the shape derivative of the Sobolev trace constant under regular perturbations of the boundary set. © 2011 Elsevier Inc. Fil:Del Pezzo, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Fernández Bonder, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2011 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00220396_v251_n8_p2327_DelPezzo http://hdl.handle.net/20.500.12110/paper_00220396_v251_n8_p2327_DelPezzo |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
P-Laplace operator Shape optimization Steklov eigenvalues |
spellingShingle |
P-Laplace operator Shape optimization Steklov eigenvalues Del Pezzo, Leandro M. Fernandez Bonder, Julian Optimal boundary holes for the Sobolev trace constant |
topic_facet |
P-Laplace operator Shape optimization Steklov eigenvalues |
description |
In this paper we study the problem of minimizing the Sobolev trace Rayleigh quotient ∥u∥W1,p(ω)p/∥u∥Lq(∂ω)p among functions that vanish in a set contained on the boundary ∂ ω of given boundary measure.We prove existence of extremals for this problem, and analyze some particular cases where information about the location of the optimal boundary set can be given. Moreover, we further study the shape derivative of the Sobolev trace constant under regular perturbations of the boundary set. © 2011 Elsevier Inc. |
author |
Del Pezzo, Leandro M. Fernandez Bonder, Julian |
author_facet |
Del Pezzo, Leandro M. Fernandez Bonder, Julian |
author_sort |
Del Pezzo, Leandro M. |
title |
Optimal boundary holes for the Sobolev trace constant |
title_short |
Optimal boundary holes for the Sobolev trace constant |
title_full |
Optimal boundary holes for the Sobolev trace constant |
title_fullStr |
Optimal boundary holes for the Sobolev trace constant |
title_full_unstemmed |
Optimal boundary holes for the Sobolev trace constant |
title_sort |
optimal boundary holes for the sobolev trace constant |
publishDate |
2011 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00220396_v251_n8_p2327_DelPezzo http://hdl.handle.net/20.500.12110/paper_00220396_v251_n8_p2327_DelPezzo |
work_keys_str_mv |
AT delpezzoleandrom optimalboundaryholesforthesobolevtraceconstant AT fernandezbonderjulian optimalboundaryholesforthesobolevtraceconstant |
_version_ |
1768542535902298112 |