Calculation of the electric hypershielding at the nuclei of molecules in a strong magnetic field
The third-rank electric hypershielding at the nuclei of 14 small molecules has been evaluated at the Hartree-Fock level of accuracy, by a pointwise procedure for the geometrical derivatives of magnetic susceptibilities and by a straightforward use of its definition within the Rayleigh-Schrödinger pe...
Guardado en:
Publicado: |
2007
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219606_v126_n15_p_Caputo http://hdl.handle.net/20.500.12110/paper_00219606_v126_n15_p_Caputo |
Aporte de: |
Sumario: | The third-rank electric hypershielding at the nuclei of 14 small molecules has been evaluated at the Hartree-Fock level of accuracy, by a pointwise procedure for the geometrical derivatives of magnetic susceptibilities and by a straightforward use of its definition within the Rayleigh-Schrödinger perturbation theory. The connection between these two quantities is provided by the Hellmann-Feynman theorem. The magnetically induced hypershielding at the nuclei accounts for distortion of molecular geometry caused by strong magnetic fields and for related changes of magnetic susceptibility. In homonuclear diatomics H2, N2, and F2, a field along the bond direction squeezes the electron cloud toward the center, determining shorter but stronger bond. It is shown that constraints for rotational and translational invariances and hypervirial theorems provide a natural criterion for Hartree-Fock quality of computed nuclear electric hypershielding. © 2007 American Institute of Physics. |
---|