Homological invariants relating the super Jordan plane to the Virasoro algebra
Nichols algebras are an important tool for the classification of Hopf algebras. Within those with finite GK dimension, we study homological invariants of the super Jordan plane, that is, the Nichols algebra A=B(V(−1,2)). These invariants are Hochschild homology, the Hochschild cohomology algebra, th...
Guardado en:
Publicado: |
2018
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00218693_v507_n_p120_Reca http://hdl.handle.net/20.500.12110/paper_00218693_v507_n_p120_Reca |
Aporte de: |
Ejemplares similares
Homological invariants relating the super Jordan plane to the Virasoro algebra
por: Reca, S., et al.
por: Reca, S., et al.
Ejemplares similares
-
Homological invariants relating the super Jordan plane to the Virasoro algebra
por: Reca, S., et al. -
G-structure on the cohomology of Hopf algebras
por: Farinati, Marco Andres, et al.
Publicado: (2004) -
G-structure on the cohomology of Hopf algebras
por: Farinati, M.A., et al.
Publicado: (2004) -
G-structure on the cohomology of Hopf algebras
por: Farinati, M.A., et al. -
G-structure on the cohomology of Hopf algebras
por: Farinati, M.A., et al.
Publicado: (2004)