Games for eigenvalues of the Hessian and concave/convex envelopes
We study the PDE λj(D2u)=0, in Ω, with u=g, on ∂Ω. Here λ1(D2u)≤…≤λN(D2u) are the ordered eigenvalues of the Hessian D2u. First, we show a geometric interpretation of the viscosity solutions to the problem in terms of convex/concave envelopes over affine spaces of dimension j. In one of our main res...
Guardado en:
Publicado: |
2018
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00217824_v_n_p_Blanc http://hdl.handle.net/20.500.12110/paper_00217824_v_n_p_Blanc |
Aporte de: |
id |
paper:paper_00217824_v_n_p_Blanc |
---|---|
record_format |
dspace |
spelling |
paper:paper_00217824_v_n_p_Blanc2023-06-08T14:42:06Z Games for eigenvalues of the Hessian and concave/convex envelopes Concave/convex envelopes Eigenvalues of the Hessian Games We study the PDE λj(D2u)=0, in Ω, with u=g, on ∂Ω. Here λ1(D2u)≤…≤λN(D2u) are the ordered eigenvalues of the Hessian D2u. First, we show a geometric interpretation of the viscosity solutions to the problem in terms of convex/concave envelopes over affine spaces of dimension j. In one of our main results, we give necessary and sufficient conditions on the domain so that the problem has a continuous solution for every continuous datum g. Next, we introduce a two-player zero-sum game whose values approximate solutions to this PDE problem. © 2018 Elsevier Masson SAS 2018 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00217824_v_n_p_Blanc http://hdl.handle.net/20.500.12110/paper_00217824_v_n_p_Blanc |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Concave/convex envelopes Eigenvalues of the Hessian Games |
spellingShingle |
Concave/convex envelopes Eigenvalues of the Hessian Games Games for eigenvalues of the Hessian and concave/convex envelopes |
topic_facet |
Concave/convex envelopes Eigenvalues of the Hessian Games |
description |
We study the PDE λj(D2u)=0, in Ω, with u=g, on ∂Ω. Here λ1(D2u)≤…≤λN(D2u) are the ordered eigenvalues of the Hessian D2u. First, we show a geometric interpretation of the viscosity solutions to the problem in terms of convex/concave envelopes over affine spaces of dimension j. In one of our main results, we give necessary and sufficient conditions on the domain so that the problem has a continuous solution for every continuous datum g. Next, we introduce a two-player zero-sum game whose values approximate solutions to this PDE problem. © 2018 Elsevier Masson SAS |
title |
Games for eigenvalues of the Hessian and concave/convex envelopes |
title_short |
Games for eigenvalues of the Hessian and concave/convex envelopes |
title_full |
Games for eigenvalues of the Hessian and concave/convex envelopes |
title_fullStr |
Games for eigenvalues of the Hessian and concave/convex envelopes |
title_full_unstemmed |
Games for eigenvalues of the Hessian and concave/convex envelopes |
title_sort |
games for eigenvalues of the hessian and concave/convex envelopes |
publishDate |
2018 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00217824_v_n_p_Blanc http://hdl.handle.net/20.500.12110/paper_00217824_v_n_p_Blanc |
_version_ |
1768541970762825728 |