A nonlocal p-Laplacian evolution equation with Neumann boundary conditions
In this paper we study the nonlocal p-Laplacian type diffusion equation,ut (t, x) = under(∫, Ω) J (x - y) | u (t, y) - u (t, x) |p - 2 (u (t, y) - u (t, x)) d y . If p > 1, this is the nonlocal analogous problem to the well-known local p-Laplacian evolution equation ut = div (| ∇ u |p - 2 ∇ u...
Guardado en:
Autor principal: | Rossi, Julio Daniel |
---|---|
Publicado: |
2008
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00217824_v90_n2_p201_Andreu http://hdl.handle.net/20.500.12110/paper_00217824_v90_n2_p201_Andreu |
Aporte de: |
Ejemplares similares
-
A nonlocal p-Laplacian evolution equation with Neumann boundary conditions
por: Andreu, F., et al.
Publicado: (2008) -
A nonlocal p-Laplacian evolution equation with Neumann boundary conditions
por: Andreu, F., et al. -
A nonlocal p-Laplacian evolution equation with Neumann boundary conditions
por: Andreu, F., et al.
Publicado: (2008) -
Local and nonlocal weighted p-laplacian evolution equations with Neumann boundary conditions
por: Rossi, Julio Daniel
Publicado: (2011) -
Local and nonlocal weighted p-laplacian evolution equations with Neumann boundary conditions
por: Andreu, F., et al.