A nonlocal p-Laplacian evolution equation with Neumann boundary conditions

In this paper we study the nonlocal p-Laplacian type diffusion equation,ut (t, x) = under(∫, Ω) J (x - y) | u (t, y) - u (t, x) |p - 2 (u (t, y) - u (t, x)) d y . If p > 1, this is the nonlocal analogous problem to the well-known local p-Laplacian evolution equation ut = div (| ∇ u |p - 2 ∇ u...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Rossi, Julio Daniel
Publicado: 2008
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00217824_v90_n2_p201_Andreu
http://hdl.handle.net/20.500.12110/paper_00217824_v90_n2_p201_Andreu
Aporte de:
id paper:paper_00217824_v90_n2_p201_Andreu
record_format dspace
spelling paper:paper_00217824_v90_n2_p201_Andreu2023-06-08T14:42:06Z A nonlocal p-Laplacian evolution equation with Neumann boundary conditions Rossi, Julio Daniel Neumann boundary conditions Nonlocal diffusion p-Laplacian Total variation flow In this paper we study the nonlocal p-Laplacian type diffusion equation,ut (t, x) = under(∫, Ω) J (x - y) | u (t, y) - u (t, x) |p - 2 (u (t, y) - u (t, x)) d y . If p > 1, this is the nonlocal analogous problem to the well-known local p-Laplacian evolution equation ut = div (| ∇ u |p - 2 ∇ u) with homogeneous Neumann boundary conditions. We prove existence and uniqueness of a strong solution, and if the kernel J is rescaled in an appropriate way, we show that the solutions to the corresponding nonlocal problems converge strongly in L∞ (0, T ; Lp (Ω)) to the solution of the p-Laplacian with homogeneous Neumann boundary conditions. The extreme case p = 1, that is, the nonlocal analogous to the total variation flow, is also analyzed. Finally, we study the asymptotic behavior of the solutions as t goes to infinity, showing the convergence to the mean value of the initial condition. © 2008 Elsevier Masson SAS. All rights reserved. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2008 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00217824_v90_n2_p201_Andreu http://hdl.handle.net/20.500.12110/paper_00217824_v90_n2_p201_Andreu
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Neumann boundary conditions
Nonlocal diffusion
p-Laplacian
Total variation flow
spellingShingle Neumann boundary conditions
Nonlocal diffusion
p-Laplacian
Total variation flow
Rossi, Julio Daniel
A nonlocal p-Laplacian evolution equation with Neumann boundary conditions
topic_facet Neumann boundary conditions
Nonlocal diffusion
p-Laplacian
Total variation flow
description In this paper we study the nonlocal p-Laplacian type diffusion equation,ut (t, x) = under(∫, Ω) J (x - y) | u (t, y) - u (t, x) |p - 2 (u (t, y) - u (t, x)) d y . If p > 1, this is the nonlocal analogous problem to the well-known local p-Laplacian evolution equation ut = div (| ∇ u |p - 2 ∇ u) with homogeneous Neumann boundary conditions. We prove existence and uniqueness of a strong solution, and if the kernel J is rescaled in an appropriate way, we show that the solutions to the corresponding nonlocal problems converge strongly in L∞ (0, T ; Lp (Ω)) to the solution of the p-Laplacian with homogeneous Neumann boundary conditions. The extreme case p = 1, that is, the nonlocal analogous to the total variation flow, is also analyzed. Finally, we study the asymptotic behavior of the solutions as t goes to infinity, showing the convergence to the mean value of the initial condition. © 2008 Elsevier Masson SAS. All rights reserved.
author Rossi, Julio Daniel
author_facet Rossi, Julio Daniel
author_sort Rossi, Julio Daniel
title A nonlocal p-Laplacian evolution equation with Neumann boundary conditions
title_short A nonlocal p-Laplacian evolution equation with Neumann boundary conditions
title_full A nonlocal p-Laplacian evolution equation with Neumann boundary conditions
title_fullStr A nonlocal p-Laplacian evolution equation with Neumann boundary conditions
title_full_unstemmed A nonlocal p-Laplacian evolution equation with Neumann boundary conditions
title_sort nonlocal p-laplacian evolution equation with neumann boundary conditions
publishDate 2008
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00217824_v90_n2_p201_Andreu
http://hdl.handle.net/20.500.12110/paper_00217824_v90_n2_p201_Andreu
work_keys_str_mv AT rossijuliodaniel anonlocalplaplacianevolutionequationwithneumannboundaryconditions
AT rossijuliodaniel nonlocalplaplacianevolutionequationwithneumannboundaryconditions
_version_ 1768543165650829312