Stable, quasi-stable and unstable physicochemical hydrodynamic flows in thin-layer cell electrodeposition

Electrodeposition in thin cells of different orientations relative to gravity leads to dendrite growth with a uniform front of the growing tips or to a hierarchy of branch sizes, competing with stable, quasi-stable or unstable physicochemical hydrodynamic flows. Here we report experimental measureme...

Descripción completa

Detalles Bibliográficos
Autores principales: Mocskos, Esteban Eduardo, Gonzalez, Graciela Alicia, Dengra, Silvina, Molina, Fernando Victor, Iemmi, Claudio César
Publicado: 2006
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00134686_v51_n15_p3058_Marshall
http://hdl.handle.net/20.500.12110/paper_00134686_v51_n15_p3058_Marshall
Aporte de:
id paper:paper_00134686_v51_n15_p3058_Marshall
record_format dspace
spelling paper:paper_00134686_v51_n15_p3058_Marshall2023-06-08T14:35:54Z Stable, quasi-stable and unstable physicochemical hydrodynamic flows in thin-layer cell electrodeposition Mocskos, Esteban Eduardo Gonzalez, Graciela Alicia Dengra, Silvina Molina, Fernando Victor Iemmi, Claudio César Computational modeling Electrodeposition Ion transport Physicochemical hydrodynamic flows Thin cells Computational methods Electrodeposition Electrodes Fuel cells Mathematical models Vortex flow Computational modeling Ion transport Physicochemical hydrodynamic flows Thin cells Fluid dynamics Electrodeposition in thin cells of different orientations relative to gravity leads to dendrite growth with a uniform front of the growing tips or to a hierarchy of branch sizes, competing with stable, quasi-stable or unstable physicochemical hydrodynamic flows. Here we report experimental measurements of electrodeposition in cells in the vertical position and we introduce a theoretical model predicting many features of these experiments. When the cathode is above the anode, our model predicts that the flow remains globally stable as long as there is no dendrite growth; when dendrites are present, zones of lowered concentration adjacent to a downwards growing finger appears, inducing a gravity driven convective vortex roll wrapped to the finger, leading to a quasi stable flow. In a vertical cell with the anode above the cathode, our model predicts the existence of an unstable flow in the form of vortex tubes or plumes detaching from each electrode, expanding toward one another and mixing. For both cases, in the presence of dendrites, the existence of an electrically driven vortex ring at the dendrite tip is predicted; it allows fluid to penetrate the dendrite tip and to be ejected from its side. © 2005 Elsevier Ltd. All rights reserved. Fil:Mocskos, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:González, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Dengra, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Molina, F.V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Iemmi, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2006 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00134686_v51_n15_p3058_Marshall http://hdl.handle.net/20.500.12110/paper_00134686_v51_n15_p3058_Marshall
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Computational modeling
Electrodeposition
Ion transport
Physicochemical hydrodynamic flows
Thin cells
Computational methods
Electrodeposition
Electrodes
Fuel cells
Mathematical models
Vortex flow
Computational modeling
Ion transport
Physicochemical hydrodynamic flows
Thin cells
Fluid dynamics
spellingShingle Computational modeling
Electrodeposition
Ion transport
Physicochemical hydrodynamic flows
Thin cells
Computational methods
Electrodeposition
Electrodes
Fuel cells
Mathematical models
Vortex flow
Computational modeling
Ion transport
Physicochemical hydrodynamic flows
Thin cells
Fluid dynamics
Mocskos, Esteban Eduardo
Gonzalez, Graciela Alicia
Dengra, Silvina
Molina, Fernando Victor
Iemmi, Claudio César
Stable, quasi-stable and unstable physicochemical hydrodynamic flows in thin-layer cell electrodeposition
topic_facet Computational modeling
Electrodeposition
Ion transport
Physicochemical hydrodynamic flows
Thin cells
Computational methods
Electrodeposition
Electrodes
Fuel cells
Mathematical models
Vortex flow
Computational modeling
Ion transport
Physicochemical hydrodynamic flows
Thin cells
Fluid dynamics
description Electrodeposition in thin cells of different orientations relative to gravity leads to dendrite growth with a uniform front of the growing tips or to a hierarchy of branch sizes, competing with stable, quasi-stable or unstable physicochemical hydrodynamic flows. Here we report experimental measurements of electrodeposition in cells in the vertical position and we introduce a theoretical model predicting many features of these experiments. When the cathode is above the anode, our model predicts that the flow remains globally stable as long as there is no dendrite growth; when dendrites are present, zones of lowered concentration adjacent to a downwards growing finger appears, inducing a gravity driven convective vortex roll wrapped to the finger, leading to a quasi stable flow. In a vertical cell with the anode above the cathode, our model predicts the existence of an unstable flow in the form of vortex tubes or plumes detaching from each electrode, expanding toward one another and mixing. For both cases, in the presence of dendrites, the existence of an electrically driven vortex ring at the dendrite tip is predicted; it allows fluid to penetrate the dendrite tip and to be ejected from its side. © 2005 Elsevier Ltd. All rights reserved.
author Mocskos, Esteban Eduardo
Gonzalez, Graciela Alicia
Dengra, Silvina
Molina, Fernando Victor
Iemmi, Claudio César
author_facet Mocskos, Esteban Eduardo
Gonzalez, Graciela Alicia
Dengra, Silvina
Molina, Fernando Victor
Iemmi, Claudio César
author_sort Mocskos, Esteban Eduardo
title Stable, quasi-stable and unstable physicochemical hydrodynamic flows in thin-layer cell electrodeposition
title_short Stable, quasi-stable and unstable physicochemical hydrodynamic flows in thin-layer cell electrodeposition
title_full Stable, quasi-stable and unstable physicochemical hydrodynamic flows in thin-layer cell electrodeposition
title_fullStr Stable, quasi-stable and unstable physicochemical hydrodynamic flows in thin-layer cell electrodeposition
title_full_unstemmed Stable, quasi-stable and unstable physicochemical hydrodynamic flows in thin-layer cell electrodeposition
title_sort stable, quasi-stable and unstable physicochemical hydrodynamic flows in thin-layer cell electrodeposition
publishDate 2006
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00134686_v51_n15_p3058_Marshall
http://hdl.handle.net/20.500.12110/paper_00134686_v51_n15_p3058_Marshall
work_keys_str_mv AT mocskosestebaneduardo stablequasistableandunstablephysicochemicalhydrodynamicflowsinthinlayercellelectrodeposition
AT gonzalezgracielaalicia stablequasistableandunstablephysicochemicalhydrodynamicflowsinthinlayercellelectrodeposition
AT dengrasilvina stablequasistableandunstablephysicochemicalhydrodynamicflowsinthinlayercellelectrodeposition
AT molinafernandovictor stablequasistableandunstablephysicochemicalhydrodynamicflowsinthinlayercellelectrodeposition
AT iemmiclaudiocesar stablequasistableandunstablephysicochemicalhydrodynamicflowsinthinlayercellelectrodeposition
_version_ 1768541968177037312