Spaces which Invert Weak Homotopy Equivalences
It is well known that if X is a CW-complex, then for every weak homotopy equivalence f: A ?†' B, the map f∗: [X, A] ?†' [X, B] induced in homotopy classes is a bijection. In fact, up to homotopy equivalence, only CW-complexes have that property. Now, for which spaces X is f∗: [B, X] ?†...
        Guardado en:
      
    
                  
      | Publicado: | 2018 | 
|---|---|
| Materias: | |
| Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00130915_v_n_p_Barmak http://hdl.handle.net/20.500.12110/paper_00130915_v_n_p_Barmak | 
| Aporte de: | 
Ejemplares similares
- 
                
        
          Spaces which Invert Weak Homotopy Equivalences        
                  
 por: Barmak, J.A.
- 
                
        
          Simple homotopy types and finite spaces        
                  
 por: Barmak, J.A., et al.
 Publicado: (2008)
- 
                
        
          Simple homotopy types and finite spaces        
                  
 por: Barmak, J.A., et al.
 Publicado: (2008)
- 
                
        
          Simple homotopy types and finite spaces        
                  
 por: Barmak, J.A., et al.
- 
                
        
          Simple homotopy types and finite spaces        
                  
 por: Barmak, Jonathan A., et al.
 Publicado: (2008)