Self-clique Helly circular-arc graphs
A clique in a graph is a complete subgraph maximal under inclusion. The clique graph of a graph is the intersection graph of its cliques. A graph is self-clique when it is isomorphic to its clique graph. A circular-arc graph is the intersection graph of a family of arcs of a circle. A Helly circular...
Guardado en:
Autor principal: | |
---|---|
Publicado: |
2006
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0012365X_v306_n6_p595_Bonomo http://hdl.handle.net/20.500.12110/paper_0012365X_v306_n6_p595_Bonomo |
Aporte de: |
Sumario: | A clique in a graph is a complete subgraph maximal under inclusion. The clique graph of a graph is the intersection graph of its cliques. A graph is self-clique when it is isomorphic to its clique graph. A circular-arc graph is the intersection graph of a family of arcs of a circle. A Helly circular-arc graph is a circular-arc graph admitting a model whose arcs satisfy the Helly property. In this note, we describe all the self-clique Helly circular-arc graphs. © 2006 Elsevier B.V. All rights reserved. |
---|