A new technique for comparing solar dynamo models and observations

We present a new technique suitable for a detailed comparison between solar dynamo models and observations. The method is based on the technique of dynamo spectroscopy proposed by Hoyng & Schutgens (1995) and bi-orthogonal decomposition of solar data. This decomposition provides a representation...

Descripción completa

Detalles Bibliográficos
Autores principales: Mininni, Pablo Daniel, Gomez, Daniel Osvaldo
Publicado: 2004
Materias:
Sun
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00046361_v426_n3_p1065_Mininni
http://hdl.handle.net/20.500.12110/paper_00046361_v426_n3_p1065_Mininni
Aporte de:
id paper:paper_00046361_v426_n3_p1065_Mininni
record_format dspace
spelling paper:paper_00046361_v426_n3_p1065_Mininni2023-06-08T14:27:35Z A new technique for comparing solar dynamo models and observations Mininni, Pablo Daniel Gomez, Daniel Osvaldo Magnetohydrodynamics (MHD) Sun: magnetic fields Sun: sunspots Astrophysics Chaos theory Kinematics Magnetic fields Magnetohydrodynamics Random processes Satellite observatories Spectroscopy Solar cycle Stochasticity Sun: magnetic fields Sun: sunspots Sun We present a new technique suitable for a detailed comparison between solar dynamo models and observations. The method is based on the technique of dynamo spectroscopy proposed by Hoyng & Schutgens (1995) and bi-orthogonal decomposition of solar data. This decomposition provides a representation of the mean and fluctuating components of the flows, yielding relevant information for the comparison. To illustrate the method, we use a simple kinematic dynamo model of the solar cycle. Irregularities are introduced in the evolution of the magnetic fields modeling the turbulent behavior of the solar convective region with a random perturbation on the external source for the poloidal field. After fine tuning the parameters of the model we obtain solar like solutions displaying a magnetic cycle of 22 years, with fluctuations in its period and amplitude. In addition, the model generates Maunder-like events with a time span of 60-100 years. Fil:Mininni, P.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Gómez, D.O. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2004 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00046361_v426_n3_p1065_Mininni http://hdl.handle.net/20.500.12110/paper_00046361_v426_n3_p1065_Mininni
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Magnetohydrodynamics (MHD)
Sun: magnetic fields
Sun: sunspots
Astrophysics
Chaos theory
Kinematics
Magnetic fields
Magnetohydrodynamics
Random processes
Satellite observatories
Spectroscopy
Solar cycle
Stochasticity
Sun: magnetic fields
Sun: sunspots
Sun
spellingShingle Magnetohydrodynamics (MHD)
Sun: magnetic fields
Sun: sunspots
Astrophysics
Chaos theory
Kinematics
Magnetic fields
Magnetohydrodynamics
Random processes
Satellite observatories
Spectroscopy
Solar cycle
Stochasticity
Sun: magnetic fields
Sun: sunspots
Sun
Mininni, Pablo Daniel
Gomez, Daniel Osvaldo
A new technique for comparing solar dynamo models and observations
topic_facet Magnetohydrodynamics (MHD)
Sun: magnetic fields
Sun: sunspots
Astrophysics
Chaos theory
Kinematics
Magnetic fields
Magnetohydrodynamics
Random processes
Satellite observatories
Spectroscopy
Solar cycle
Stochasticity
Sun: magnetic fields
Sun: sunspots
Sun
description We present a new technique suitable for a detailed comparison between solar dynamo models and observations. The method is based on the technique of dynamo spectroscopy proposed by Hoyng & Schutgens (1995) and bi-orthogonal decomposition of solar data. This decomposition provides a representation of the mean and fluctuating components of the flows, yielding relevant information for the comparison. To illustrate the method, we use a simple kinematic dynamo model of the solar cycle. Irregularities are introduced in the evolution of the magnetic fields modeling the turbulent behavior of the solar convective region with a random perturbation on the external source for the poloidal field. After fine tuning the parameters of the model we obtain solar like solutions displaying a magnetic cycle of 22 years, with fluctuations in its period and amplitude. In addition, the model generates Maunder-like events with a time span of 60-100 years.
author Mininni, Pablo Daniel
Gomez, Daniel Osvaldo
author_facet Mininni, Pablo Daniel
Gomez, Daniel Osvaldo
author_sort Mininni, Pablo Daniel
title A new technique for comparing solar dynamo models and observations
title_short A new technique for comparing solar dynamo models and observations
title_full A new technique for comparing solar dynamo models and observations
title_fullStr A new technique for comparing solar dynamo models and observations
title_full_unstemmed A new technique for comparing solar dynamo models and observations
title_sort new technique for comparing solar dynamo models and observations
publishDate 2004
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00046361_v426_n3_p1065_Mininni
http://hdl.handle.net/20.500.12110/paper_00046361_v426_n3_p1065_Mininni
work_keys_str_mv AT mininnipablodaniel anewtechniqueforcomparingsolardynamomodelsandobservations
AT gomezdanielosvaldo anewtechniqueforcomparingsolardynamomodelsandobservations
AT mininnipablodaniel newtechniqueforcomparingsolardynamomodelsandobservations
AT gomezdanielosvaldo newtechniqueforcomparingsolardynamomodelsandobservations
_version_ 1768545353193226240