A lyapunov type inequality for indefinite weights and eigenvalue homogenization
In this paper we prove a Lyapunov type inequality for quasilinear problems with indefinite weights. We show that the first eigenvalue is bounded below in terms of the integral of the weight, instead of the integral of its positive part. We apply this inequality to some eigenvalue homogenization prob...
Autores principales: | , |
---|---|
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029939_v144_n4_p1669_Bonder http://hdl.handle.net/20.500.12110/paper_00029939_v144_n4_p1669_Bonder |
Aporte de: |
id |
paper:paper_00029939_v144_n4_p1669_Bonder |
---|---|
record_format |
dspace |
spelling |
paper:paper_00029939_v144_n4_p1669_Bonder2023-06-08T14:23:35Z A lyapunov type inequality for indefinite weights and eigenvalue homogenization Pinasco, Juan Pablo Salort, Ariel Martín Eigenvalues Homogenization Lyapunov’s inequality P-Laplacian In this paper we prove a Lyapunov type inequality for quasilinear problems with indefinite weights. We show that the first eigenvalue is bounded below in terms of the integral of the weight, instead of the integral of its positive part. We apply this inequality to some eigenvalue homogenization problems with indefinite weights. © 2015 American Mathematical Society. Fil:Pinasco, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Salort, A.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2016 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029939_v144_n4_p1669_Bonder http://hdl.handle.net/20.500.12110/paper_00029939_v144_n4_p1669_Bonder |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Eigenvalues Homogenization Lyapunov’s inequality P-Laplacian |
spellingShingle |
Eigenvalues Homogenization Lyapunov’s inequality P-Laplacian Pinasco, Juan Pablo Salort, Ariel Martín A lyapunov type inequality for indefinite weights and eigenvalue homogenization |
topic_facet |
Eigenvalues Homogenization Lyapunov’s inequality P-Laplacian |
description |
In this paper we prove a Lyapunov type inequality for quasilinear problems with indefinite weights. We show that the first eigenvalue is bounded below in terms of the integral of the weight, instead of the integral of its positive part. We apply this inequality to some eigenvalue homogenization problems with indefinite weights. © 2015 American Mathematical Society. |
author |
Pinasco, Juan Pablo Salort, Ariel Martín |
author_facet |
Pinasco, Juan Pablo Salort, Ariel Martín |
author_sort |
Pinasco, Juan Pablo |
title |
A lyapunov type inequality for indefinite weights and eigenvalue homogenization |
title_short |
A lyapunov type inequality for indefinite weights and eigenvalue homogenization |
title_full |
A lyapunov type inequality for indefinite weights and eigenvalue homogenization |
title_fullStr |
A lyapunov type inequality for indefinite weights and eigenvalue homogenization |
title_full_unstemmed |
A lyapunov type inequality for indefinite weights and eigenvalue homogenization |
title_sort |
lyapunov type inequality for indefinite weights and eigenvalue homogenization |
publishDate |
2016 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029939_v144_n4_p1669_Bonder http://hdl.handle.net/20.500.12110/paper_00029939_v144_n4_p1669_Bonder |
work_keys_str_mv |
AT pinascojuanpablo alyapunovtypeinequalityforindefiniteweightsandeigenvaluehomogenization AT salortarielmartin alyapunovtypeinequalityforindefiniteweightsandeigenvaluehomogenization AT pinascojuanpablo lyapunovtypeinequalityforindefiniteweightsandeigenvaluehomogenization AT salortarielmartin lyapunovtypeinequalityforindefiniteweightsandeigenvaluehomogenization |
_version_ |
1768545811699859456 |