A lyapunov type inequality for indefinite weights and eigenvalue homogenization

In this paper we prove a Lyapunov type inequality for quasilinear problems with indefinite weights. We show that the first eigenvalue is bounded below in terms of the integral of the weight, instead of the integral of its positive part. We apply this inequality to some eigenvalue homogenization prob...

Descripción completa

Detalles Bibliográficos
Autores principales: Pinasco, Juan Pablo, Salort, Ariel Martín
Publicado: 2016
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029939_v144_n4_p1669_Bonder
http://hdl.handle.net/20.500.12110/paper_00029939_v144_n4_p1669_Bonder
Aporte de:
id paper:paper_00029939_v144_n4_p1669_Bonder
record_format dspace
spelling paper:paper_00029939_v144_n4_p1669_Bonder2023-06-08T14:23:35Z A lyapunov type inequality for indefinite weights and eigenvalue homogenization Pinasco, Juan Pablo Salort, Ariel Martín Eigenvalues Homogenization Lyapunov’s inequality P-Laplacian In this paper we prove a Lyapunov type inequality for quasilinear problems with indefinite weights. We show that the first eigenvalue is bounded below in terms of the integral of the weight, instead of the integral of its positive part. We apply this inequality to some eigenvalue homogenization problems with indefinite weights. © 2015 American Mathematical Society. Fil:Pinasco, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Salort, A.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2016 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029939_v144_n4_p1669_Bonder http://hdl.handle.net/20.500.12110/paper_00029939_v144_n4_p1669_Bonder
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Eigenvalues
Homogenization
Lyapunov’s inequality
P-Laplacian
spellingShingle Eigenvalues
Homogenization
Lyapunov’s inequality
P-Laplacian
Pinasco, Juan Pablo
Salort, Ariel Martín
A lyapunov type inequality for indefinite weights and eigenvalue homogenization
topic_facet Eigenvalues
Homogenization
Lyapunov’s inequality
P-Laplacian
description In this paper we prove a Lyapunov type inequality for quasilinear problems with indefinite weights. We show that the first eigenvalue is bounded below in terms of the integral of the weight, instead of the integral of its positive part. We apply this inequality to some eigenvalue homogenization problems with indefinite weights. © 2015 American Mathematical Society.
author Pinasco, Juan Pablo
Salort, Ariel Martín
author_facet Pinasco, Juan Pablo
Salort, Ariel Martín
author_sort Pinasco, Juan Pablo
title A lyapunov type inequality for indefinite weights and eigenvalue homogenization
title_short A lyapunov type inequality for indefinite weights and eigenvalue homogenization
title_full A lyapunov type inequality for indefinite weights and eigenvalue homogenization
title_fullStr A lyapunov type inequality for indefinite weights and eigenvalue homogenization
title_full_unstemmed A lyapunov type inequality for indefinite weights and eigenvalue homogenization
title_sort lyapunov type inequality for indefinite weights and eigenvalue homogenization
publishDate 2016
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029939_v144_n4_p1669_Bonder
http://hdl.handle.net/20.500.12110/paper_00029939_v144_n4_p1669_Bonder
work_keys_str_mv AT pinascojuanpablo alyapunovtypeinequalityforindefiniteweightsandeigenvaluehomogenization
AT salortarielmartin alyapunovtypeinequalityforindefiniteweightsandeigenvaluehomogenization
AT pinascojuanpablo lyapunovtypeinequalityforindefiniteweightsandeigenvaluehomogenization
AT salortarielmartin lyapunovtypeinequalityforindefiniteweightsandeigenvaluehomogenization
_version_ 1768545811699859456