Geometrical significance of the löwner-heinz inequality
It is proven that the Lowner-Heinz inequality ||At Bt|| ≤ ||AB||t, valid for all positive invertible operators A, B on the Hubert space H and t ε [0, 1], has equivalent forms related to the Finsler structure of the space of positive invertible elements of L(H) or, more generally, of a unital C*-alge...
Guardado en:
Publicado: |
2000
|
---|---|
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029939_v128_n4_p1031_Andruchow http://hdl.handle.net/20.500.12110/paper_00029939_v128_n4_p1031_Andruchow |
Aporte de: |
id |
paper:paper_00029939_v128_n4_p1031_Andruchow |
---|---|
record_format |
dspace |
spelling |
paper:paper_00029939_v128_n4_p1031_Andruchow2023-06-08T14:23:24Z Geometrical significance of the löwner-heinz inequality It is proven that the Lowner-Heinz inequality ||At Bt|| ≤ ||AB||t, valid for all positive invertible operators A, B on the Hubert space H and t ε [0, 1], has equivalent forms related to the Finsler structure of the space of positive invertible elements of L(H) or, more generally, of a unital C*-algebra. In particular, the Löwner-Heinz inequality is equivalent to some type of "nonpositive curvature" property of that space. © 2000 American Mathematical Society. 2000 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029939_v128_n4_p1031_Andruchow http://hdl.handle.net/20.500.12110/paper_00029939_v128_n4_p1031_Andruchow |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
It is proven that the Lowner-Heinz inequality ||At Bt|| ≤ ||AB||t, valid for all positive invertible operators A, B on the Hubert space H and t ε [0, 1], has equivalent forms related to the Finsler structure of the space of positive invertible elements of L(H) or, more generally, of a unital C*-algebra. In particular, the Löwner-Heinz inequality is equivalent to some type of "nonpositive curvature" property of that space. © 2000 American Mathematical Society. |
title |
Geometrical significance of the löwner-heinz inequality |
spellingShingle |
Geometrical significance of the löwner-heinz inequality |
title_short |
Geometrical significance of the löwner-heinz inequality |
title_full |
Geometrical significance of the löwner-heinz inequality |
title_fullStr |
Geometrical significance of the löwner-heinz inequality |
title_full_unstemmed |
Geometrical significance of the löwner-heinz inequality |
title_sort |
geometrical significance of the löwner-heinz inequality |
publishDate |
2000 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029939_v128_n4_p1031_Andruchow http://hdl.handle.net/20.500.12110/paper_00029939_v128_n4_p1031_Andruchow |
_version_ |
1768543970586001408 |