Cyclic homology of Brzeziński's crossed products and of braided Hopf crossed products
Let k be a field, A a unitary associative k-algebra and V a k-vector space endowed with a distinguished element 1V. We obtain a mixed complex, simpler than the canonical one, that gives the Hochschild, cyclic, negative and periodic homologies of a crossed product E := A #fV, in the sense of Brzezińs...
Autores principales: | , , |
---|---|
Publicado: |
2012
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00018708_v231_n6_p3502_Carboni http://hdl.handle.net/20.500.12110/paper_00018708_v231_n6_p3502_Carboni |
Aporte de: |
id |
paper:paper_00018708_v231_n6_p3502_Carboni |
---|---|
record_format |
dspace |
spelling |
paper:paper_00018708_v231_n6_p3502_Carboni2023-06-08T14:21:48Z Cyclic homology of Brzeziński's crossed products and of braided Hopf crossed products Carboni, Graciela Guccione, Jorge Alberto Guccione, Juan José Crossed products Cyclic homology Hochschild (co)homology Let k be a field, A a unitary associative k-algebra and V a k-vector space endowed with a distinguished element 1V. We obtain a mixed complex, simpler than the canonical one, that gives the Hochschild, cyclic, negative and periodic homologies of a crossed product E := A #fV, in the sense of Brzeziński. We actually work in the more general context of relative cyclic homology. Specifically, we consider a subalgebra K of A that satisfies suitable hypothesis and we find a mixed complex computing the Hochschild, cyclic, negative and periodic homologies of E relative to K. Then, when E is a cleft braided Hopf crossed product, we obtain a simpler mixed complex, that also gives the Hochschild, cyclic, negative and periodic homologies of E. © 2012 Elsevier Ltd. Fil:Carboni, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2012 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00018708_v231_n6_p3502_Carboni http://hdl.handle.net/20.500.12110/paper_00018708_v231_n6_p3502_Carboni |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Crossed products Cyclic homology Hochschild (co)homology |
spellingShingle |
Crossed products Cyclic homology Hochschild (co)homology Carboni, Graciela Guccione, Jorge Alberto Guccione, Juan José Cyclic homology of Brzeziński's crossed products and of braided Hopf crossed products |
topic_facet |
Crossed products Cyclic homology Hochschild (co)homology |
description |
Let k be a field, A a unitary associative k-algebra and V a k-vector space endowed with a distinguished element 1V. We obtain a mixed complex, simpler than the canonical one, that gives the Hochschild, cyclic, negative and periodic homologies of a crossed product E := A #fV, in the sense of Brzeziński. We actually work in the more general context of relative cyclic homology. Specifically, we consider a subalgebra K of A that satisfies suitable hypothesis and we find a mixed complex computing the Hochschild, cyclic, negative and periodic homologies of E relative to K. Then, when E is a cleft braided Hopf crossed product, we obtain a simpler mixed complex, that also gives the Hochschild, cyclic, negative and periodic homologies of E. © 2012 Elsevier Ltd. |
author |
Carboni, Graciela Guccione, Jorge Alberto Guccione, Juan José |
author_facet |
Carboni, Graciela Guccione, Jorge Alberto Guccione, Juan José |
author_sort |
Carboni, Graciela |
title |
Cyclic homology of Brzeziński's crossed products and of braided Hopf crossed products |
title_short |
Cyclic homology of Brzeziński's crossed products and of braided Hopf crossed products |
title_full |
Cyclic homology of Brzeziński's crossed products and of braided Hopf crossed products |
title_fullStr |
Cyclic homology of Brzeziński's crossed products and of braided Hopf crossed products |
title_full_unstemmed |
Cyclic homology of Brzeziński's crossed products and of braided Hopf crossed products |
title_sort |
cyclic homology of brzeziński's crossed products and of braided hopf crossed products |
publishDate |
2012 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00018708_v231_n6_p3502_Carboni http://hdl.handle.net/20.500.12110/paper_00018708_v231_n6_p3502_Carboni |
work_keys_str_mv |
AT carbonigraciela cyclichomologyofbrzezinskiscrossedproductsandofbraidedhopfcrossedproducts AT guccionejorgealberto cyclichomologyofbrzezinskiscrossedproductsandofbraidedhopfcrossedproducts AT guccionejuanjose cyclichomologyofbrzezinskiscrossedproductsandofbraidedhopfcrossedproducts |
_version_ |
1768544296743469056 |