Solutions of the divergence operator on John domains
If Ω ⊂ Rn is a bounded domain, the existence of solutions u ∈ W01, p (Ω) of div u = f for f ∈ Lp (Ω) with vanishing mean value and 1 < p < ∞, is a basic result in the analysis of the Stokes equations. It is known that the result holds when Ω is a Lipschitz domain and that it is not val...
Guardado en:
Autores principales: | , |
---|---|
Publicado: |
2006
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00018708_v206_n2_p373_Acosta http://hdl.handle.net/20.500.12110/paper_00018708_v206_n2_p373_Acosta |
Aporte de: |
id |
paper:paper_00018708_v206_n2_p373_Acosta |
---|---|
record_format |
dspace |
spelling |
paper:paper_00018708_v206_n2_p373_Acosta2023-06-08T14:21:43Z Solutions of the divergence operator on John domains Acosta Rodriguez, Gabriel Duran, Ricardo Guillermo Divergence operator John domains Singular integrals If Ω ⊂ Rn is a bounded domain, the existence of solutions u ∈ W01, p (Ω) of div u = f for f ∈ Lp (Ω) with vanishing mean value and 1 < p < ∞, is a basic result in the analysis of the Stokes equations. It is known that the result holds when Ω is a Lipschitz domain and that it is not valid for domains with external cusps. In this paper we prove that the result holds for John domains. Our proof is constructive: the solution u is given by an explicit integral operator acting on f. To prove that u ∈ W01, p (Ω) we make use of the Calderón-Zygmund singular integral operator theory and the Hardy-Littlewood maximal function. For domains satisfying the separation property introduced in [S. Buckley, P. Koskela, Sobolev-Poincaré implies John, Math. Res. Lett. 2 (5) (1995) 577-593], and 1 < p < n, we also prove a converse result, thus characterizing in this case the domains for which a continuous right inverse of the divergence exists. In particular, our result applies to simply connected planar domains because they satisfy the separation property. © 2005 Elsevier Inc. All rights reserved. Fil:Acosta, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Durán, R.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2006 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00018708_v206_n2_p373_Acosta http://hdl.handle.net/20.500.12110/paper_00018708_v206_n2_p373_Acosta |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Divergence operator John domains Singular integrals |
spellingShingle |
Divergence operator John domains Singular integrals Acosta Rodriguez, Gabriel Duran, Ricardo Guillermo Solutions of the divergence operator on John domains |
topic_facet |
Divergence operator John domains Singular integrals |
description |
If Ω ⊂ Rn is a bounded domain, the existence of solutions u ∈ W01, p (Ω) of div u = f for f ∈ Lp (Ω) with vanishing mean value and 1 < p < ∞, is a basic result in the analysis of the Stokes equations. It is known that the result holds when Ω is a Lipschitz domain and that it is not valid for domains with external cusps. In this paper we prove that the result holds for John domains. Our proof is constructive: the solution u is given by an explicit integral operator acting on f. To prove that u ∈ W01, p (Ω) we make use of the Calderón-Zygmund singular integral operator theory and the Hardy-Littlewood maximal function. For domains satisfying the separation property introduced in [S. Buckley, P. Koskela, Sobolev-Poincaré implies John, Math. Res. Lett. 2 (5) (1995) 577-593], and 1 < p < n, we also prove a converse result, thus characterizing in this case the domains for which a continuous right inverse of the divergence exists. In particular, our result applies to simply connected planar domains because they satisfy the separation property. © 2005 Elsevier Inc. All rights reserved. |
author |
Acosta Rodriguez, Gabriel Duran, Ricardo Guillermo |
author_facet |
Acosta Rodriguez, Gabriel Duran, Ricardo Guillermo |
author_sort |
Acosta Rodriguez, Gabriel |
title |
Solutions of the divergence operator on John domains |
title_short |
Solutions of the divergence operator on John domains |
title_full |
Solutions of the divergence operator on John domains |
title_fullStr |
Solutions of the divergence operator on John domains |
title_full_unstemmed |
Solutions of the divergence operator on John domains |
title_sort |
solutions of the divergence operator on john domains |
publishDate |
2006 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00018708_v206_n2_p373_Acosta http://hdl.handle.net/20.500.12110/paper_00018708_v206_n2_p373_Acosta |
work_keys_str_mv |
AT acostarodriguezgabriel solutionsofthedivergenceoperatoronjohndomains AT duranricardoguillermo solutionsofthedivergenceoperatoronjohndomains |
_version_ |
1768542152143405056 |