Métodos numéricos eficientes basados en descomposición de operadores para la solución de ecuaciones de evolución
En esta tesis implementamos métodos numéricos para la solución eficiente de ecuaciones de evolución en derivadas parciales y los aplicamos al estudio de modelos matemáticos surgidos en distintos problemas de ciencia y tecnología. En particular, investigamos métodos basados en técnicas de descomposic...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | |
| Formato: | Tesis doctoral acceptedVersion |
| Lenguaje: | Español |
| Publicado: |
Universidad Nacional de General Sarmiento
2023
|
| Materias: | |
| Acceso en línea: | http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/2130 |
| Aporte de: |
| id |
I71-R177-UNGS-2130 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Nacional de General Sarmiento |
| institution_str |
I-71 |
| repository_str |
R-177 |
| collection |
Repositorio Institucional Digital de Acceso Abierto (UNGS) |
| language |
Español |
| orig_language_str_mv |
spa |
| topic |
Ecuaciones de evolución Métodos numéricos Descomposición de operadores Ecuación de Schrödinger no lineal Ecuación compleja de Ginzburg–Landau Laplaciano fraccionario Métodos afines Integración geométrica Métodos simplécticos Aproximación de Lie–Trotter Adaptatividad temporal Solitones Métodos pseudoespectrales Equações de evolução Métodos numéricos Decomposição de operadores Equação de Schrödinger não linear Equação complexa de Ginzburg-Landau Laplaciano fracionário Métodos afins Integração geométrica Métodos simpléticos Aproximação de Lie-Trotter Adaptividade temporal Solitons Métodos pseudoespectral Evolution equations Numerical methods Operator decomposition Nonlinear Schrödinger equation Complex Ginzburg–Landau equation Fractional Laplacian Affine methods Geometric integration Symplectic methods Lie–Trotter approximation Time adaptivity Solitons Pseudospectral methods |
| spellingShingle |
Ecuaciones de evolución Métodos numéricos Descomposición de operadores Ecuación de Schrödinger no lineal Ecuación compleja de Ginzburg–Landau Laplaciano fraccionario Métodos afines Integración geométrica Métodos simplécticos Aproximación de Lie–Trotter Adaptatividad temporal Solitones Métodos pseudoespectrales Equações de evolução Métodos numéricos Decomposição de operadores Equação de Schrödinger não linear Equação complexa de Ginzburg-Landau Laplaciano fracionário Métodos afins Integração geométrica Métodos simpléticos Aproximação de Lie-Trotter Adaptividade temporal Solitons Métodos pseudoespectral Evolution equations Numerical methods Operator decomposition Nonlinear Schrödinger equation Complex Ginzburg–Landau equation Fractional Laplacian Affine methods Geometric integration Symplectic methods Lie–Trotter approximation Time adaptivity Solitons Pseudospectral methods Raviola, Lisandro Aníbal Métodos numéricos eficientes basados en descomposición de operadores para la solución de ecuaciones de evolución |
| topic_facet |
Ecuaciones de evolución Métodos numéricos Descomposición de operadores Ecuación de Schrödinger no lineal Ecuación compleja de Ginzburg–Landau Laplaciano fraccionario Métodos afines Integración geométrica Métodos simplécticos Aproximación de Lie–Trotter Adaptatividad temporal Solitones Métodos pseudoespectrales Equações de evolução Métodos numéricos Decomposição de operadores Equação de Schrödinger não linear Equação complexa de Ginzburg-Landau Laplaciano fracionário Métodos afins Integração geométrica Métodos simpléticos Aproximação de Lie-Trotter Adaptividade temporal Solitons Métodos pseudoespectral Evolution equations Numerical methods Operator decomposition Nonlinear Schrödinger equation Complex Ginzburg–Landau equation Fractional Laplacian Affine methods Geometric integration Symplectic methods Lie–Trotter approximation Time adaptivity Solitons Pseudospectral methods |
| description |
En esta tesis implementamos métodos numéricos para la solución eficiente de ecuaciones de evolución en derivadas parciales y los aplicamos al estudio de modelos matemáticos surgidos en distintos problemas de ciencia y tecnología. En particular, investigamos métodos basados en técnicas de descomposición de operadores (splitting), caracterizados por una virtuosa conjunción de simplicidad conceptual y versatilidad que permite adaptarlos a las particularidades de los operadores involucrados en diversos problemas. En este contexto, evaluamos el desempeño de esquemas aditivos de descomposición de operadores de alto orden recientemente introducidos, que denominamos métodos afines. Estos métodos se obtienen por extrapolación y consisten en combinaciones afines de propagadores de Lie–Trotter. Debido a su estructura, permiten abordar de manera indistinta problemas de evolución tanto reversibles como irreversibles. |
| author2 |
De Leo, Mariano Fernando |
| author_facet |
De Leo, Mariano Fernando Raviola, Lisandro Aníbal |
| format |
Tesis doctoral Tesis doctoral acceptedVersion |
| author |
Raviola, Lisandro Aníbal |
| author_sort |
Raviola, Lisandro Aníbal |
| title |
Métodos numéricos eficientes basados en descomposición de operadores para la solución de ecuaciones de evolución |
| title_short |
Métodos numéricos eficientes basados en descomposición de operadores para la solución de ecuaciones de evolución |
| title_full |
Métodos numéricos eficientes basados en descomposición de operadores para la solución de ecuaciones de evolución |
| title_fullStr |
Métodos numéricos eficientes basados en descomposición de operadores para la solución de ecuaciones de evolución |
| title_full_unstemmed |
Métodos numéricos eficientes basados en descomposición de operadores para la solución de ecuaciones de evolución |
| title_sort |
métodos numéricos eficientes basados en descomposición de operadores para la solución de ecuaciones de evolución |
| publisher |
Universidad Nacional de General Sarmiento |
| publishDate |
2023 |
| url |
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/2130 |
| work_keys_str_mv |
AT raviolalisandroanibal metodosnumericoseficientesbasadosendescomposiciondeoperadoresparalasoluciondeecuacionesdeevolucion |
| _version_ |
1826363258073776128 |
| spelling |
I71-R177-UNGS-21302025-03-11T15:38:44Z Métodos numéricos eficientes basados en descomposición de operadores para la solución de ecuaciones de evolución Raviola, Lisandro Aníbal De Leo, Mariano Fernando Ecuaciones de evolución Métodos numéricos Descomposición de operadores Ecuación de Schrödinger no lineal Ecuación compleja de Ginzburg–Landau Laplaciano fraccionario Métodos afines Integración geométrica Métodos simplécticos Aproximación de Lie–Trotter Adaptatividad temporal Solitones Métodos pseudoespectrales Equações de evolução Métodos numéricos Decomposição de operadores Equação de Schrödinger não linear Equação complexa de Ginzburg-Landau Laplaciano fracionário Métodos afins Integração geométrica Métodos simpléticos Aproximação de Lie-Trotter Adaptividade temporal Solitons Métodos pseudoespectral Evolution equations Numerical methods Operator decomposition Nonlinear Schrödinger equation Complex Ginzburg–Landau equation Fractional Laplacian Affine methods Geometric integration Symplectic methods Lie–Trotter approximation Time adaptivity Solitons Pseudospectral methods En esta tesis implementamos métodos numéricos para la solución eficiente de ecuaciones de evolución en derivadas parciales y los aplicamos al estudio de modelos matemáticos surgidos en distintos problemas de ciencia y tecnología. En particular, investigamos métodos basados en técnicas de descomposición de operadores (splitting), caracterizados por una virtuosa conjunción de simplicidad conceptual y versatilidad que permite adaptarlos a las particularidades de los operadores involucrados en diversos problemas. En este contexto, evaluamos el desempeño de esquemas aditivos de descomposición de operadores de alto orden recientemente introducidos, que denominamos métodos afines. Estos métodos se obtienen por extrapolación y consisten en combinaciones afines de propagadores de Lie–Trotter. Debido a su estructura, permiten abordar de manera indistinta problemas de evolución tanto reversibles como irreversibles. In this thesis we implement numerical methods for the efficient solution of partial differential evolution equations and apply them to the study of mathematical models arising from different problems in science and technology. In particular, we investigate methods based on operator splitting techniques, characterized by a virtuous conjunction of conceptual simplicity and versatility that allows them to be adapted to the particularities of the operators involved in various problems. In this context, we evaluate the performance of recently introduced additive schemes for high-order operator decomposition, which we call affine methods. These methods are obtained by extrapolation and consist of affine combinations of Lie–Trotter propagators. Due to their structure, they allow us to address both reversible and irreversible evolution problems. Nesta tese implementamos métodos numéricos para a solução eficiente de equações de evolução diferencial parcial e os aplicamos ao estudo de modelos matemáticos que surgem em diferentes problemas de ciência e tecnologia. Em particular, investigamos métodos baseados em técnicas de decomposição de operadores (splitting), caracterizados por uma combinação virtuosa de simplicidade conceitual e versatilidade que permite adaptá-los às particularidades dos operadores envolvidos em diversos problemas. Neste contexto, avaliamos o desempenho de esquemas aditivos de decomposição de operadores de alta ordem recentemente introduzidos, que chamamos de métodos afins. Esses métodos são obtidos por extrapolação e consistem em combinações afins de propagadores Lie-Trotter. Devido à sua estrutura, eles permitem que problemas de evolução reversíveis e irreversíveis sejam abordados de forma intercambiável. Fil: Raviola, Lisandro Aníbal. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. 2023-12 2025-03-11T15:38:43Z 2025-03-11T15:38:43Z 2023-12 info:eu-repo/semantics/doctoralThesis info:ar-repo/semantics/tesis doctoral info:eu-repo/semantics/acceptedVersion Raviola, L. A. (2023). Métodos numéricos eficientes basados en descomposición de operadores para la solución de ecuaciones de evolución. [Tesis de doctorado]. Los Polvorines, Argentina : Universidad Nacional de General Sarmiento. http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/2130 spa info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/4.0/ application/pdf 142 p. application/pdf Universidad Nacional de General Sarmiento |