Schmidt decomposable products of projections

Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.

Guardado en:
Detalles Bibliográficos
Autores principales: Andruchow, Esteban, Corach, Gustavo
Formato: Artículo publishedVersion
Lenguaje:Inglés
Publicado: Birkhauser Verlag Ag 2024
Materias:
Acceso en línea:http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1821
Aporte de:
id I71-R177-UNGS-1821
record_format dspace
spelling I71-R177-UNGS-18212024-12-23T14:31:44Z Schmidt decomposable products of projections Andruchow, Esteban Corach, Gustavo Projections Products of projections Differences of projections Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. Fil: Corach, Gustavo. Universidad Nacional de General Sarmiento; Instituto de Ciencias; Argentina. Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. We characterize operators T = P Q (P, Q orthogonal projections in a Hilbert space H) which have a singular value decomposition. A spatial characterizations is given: this condition occurs if and only if there exist orthonormal bases {ψn} of R(P) and {ξn} of R(Q) such that ξn, ψm = 0 if n = m. Also it is shown that this is equivalent to A = P − Q being diagonalizable. Several examples are studied, relating Toeplitz, Hankel and Wiener–Hopf operators to this condition. We also examine the relationship with the differential geometry of the Grassmann manifold of underlying the Hilbert space: if T = P Q has a singular value decomposition, then the generic parts of P and Q are joined by a minimal geodesic with diagonalizable exponent. 2024-12-23T14:30:42Z 2024-12-23T14:30:42Z 2017 info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion Corach, G. y Andruchow, E. (2017). Schmidt Decomposable Products of Projections. Integral Equations and Operator Theory, 89(4), 557-580. 0378-620X http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1821 eng info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/4.0/ application/pdf application/pdf Birkhauser Verlag Ag Integral Equations and Operator Theory. Dic. 2017; 89(4): 557-580
institution Universidad Nacional de General Sarmiento
institution_str I-71
repository_str R-177
collection Repositorio Institucional Digital de Acceso Abierto (UNGS)
language Inglés
orig_language_str_mv eng
topic Projections
Products of projections
Differences of projections
spellingShingle Projections
Products of projections
Differences of projections
Andruchow, Esteban
Corach, Gustavo
Schmidt decomposable products of projections
topic_facet Projections
Products of projections
Differences of projections
description Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
format Artículo
Artículo
publishedVersion
author Andruchow, Esteban
Corach, Gustavo
author_facet Andruchow, Esteban
Corach, Gustavo
author_sort Andruchow, Esteban
title Schmidt decomposable products of projections
title_short Schmidt decomposable products of projections
title_full Schmidt decomposable products of projections
title_fullStr Schmidt decomposable products of projections
title_full_unstemmed Schmidt decomposable products of projections
title_sort schmidt decomposable products of projections
publisher Birkhauser Verlag Ag
publishDate 2024
url http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1821
work_keys_str_mv AT andruchowesteban schmidtdecomposableproductsofprojections
AT corachgustavo schmidtdecomposableproductsofprojections
_version_ 1824528700471771136