Operators which preserve a positive definite inner product
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Autor principal: | |
---|---|
Formato: | Artículo publishedVersion |
Lenguaje: | Inglés |
Publicado: |
Birkhauser Verlag AG
2024
|
Materias: | |
Acceso en línea: | http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1816 |
Aporte de: |
id |
I71-R177-UNGS-1816 |
---|---|
record_format |
dspace |
spelling |
I71-R177-UNGS-18162024-12-23T14:34:48Z Operators which preserve a positive definite inner product Andruchow, Esteban A-isometries A-unitaries Compatible subspaces Symmetrizable transformations Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. Let H be a Hilbert space, A a positive definite operator in H and hf, giA = hAf, gi, f, g ∈ H, the A-inner product. This paper studies the geometry of the set I a A := { adjointable isometries for h , iA}. It is proved that I a A is a submanifold of the Banach algebra of adjointable operators, and a homogeneous space of the group of invertible operators in H, which are unitaries for the A-inner product. Smooth curves in I a A with given initial conditions, which are minimal for the metric induced by h , iA, are presented. This result depends on an adaptation of M.G. Krein’s extension method of symmetric contractions, in order that it works also for symmetrizable transformations (i.e., operators which are selfadjoint for the A-inner product). 2024-12-23T14:30:41Z 2024-12-23T14:30:41Z 2022 info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion Andruchow, E. (2022). Operators which preserve a positive definite inner product. Integral Equations and Operator Theory, 94(3), 29, 1-22. 0378-620X http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1816 eng doi.org/10.1007/s00020-022-02709-0 info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/4.0/ application/pdf application/pdf Birkhauser Verlag AG Integral Equations and Operator Theory. 2022; 94(3): 29, 1-22 https://link.springer.com/journal/20/volumes-and-issues/94-3 |
institution |
Universidad Nacional de General Sarmiento |
institution_str |
I-71 |
repository_str |
R-177 |
collection |
Repositorio Institucional Digital de Acceso Abierto (UNGS) |
language |
Inglés |
orig_language_str_mv |
eng |
topic |
A-isometries A-unitaries Compatible subspaces Symmetrizable transformations |
spellingShingle |
A-isometries A-unitaries Compatible subspaces Symmetrizable transformations Andruchow, Esteban Operators which preserve a positive definite inner product |
topic_facet |
A-isometries A-unitaries Compatible subspaces Symmetrizable transformations |
description |
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. |
format |
Artículo Artículo publishedVersion |
author |
Andruchow, Esteban |
author_facet |
Andruchow, Esteban |
author_sort |
Andruchow, Esteban |
title |
Operators which preserve a positive definite inner product |
title_short |
Operators which preserve a positive definite inner product |
title_full |
Operators which preserve a positive definite inner product |
title_fullStr |
Operators which preserve a positive definite inner product |
title_full_unstemmed |
Operators which preserve a positive definite inner product |
title_sort |
operators which preserve a positive definite inner product |
publisher |
Birkhauser Verlag AG |
publishDate |
2024 |
url |
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1816 |
work_keys_str_mv |
AT andruchowesteban operatorswhichpreserveapositivedefiniteinnerproduct |
_version_ |
1824528619974688768 |