Domination parameters with number 2 : interrelations and algorithmic consequences

Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina

Guardado en:
Detalles Bibliográficos
Autores principales: Bonomo, Flavia, Brešar, Boštjan, Grippo, Luciano Norberto, Milanič, Martin, Safe, Martín D.
Formato: Artículo publishedVersion
Lenguaje:Inglés
Publicado: Elsevier Science BV 2024
Materias:
Acceso en línea:http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1588
Aporte de:
id I71-R177-UNGS-1588
record_format dspace
spelling I71-R177-UNGS-15882024-07-23T17:14:56Z Domination parameters with number 2 : interrelations and algorithmic consequences Bonomo, Flavia Brešar, Boštjan Grippo, Luciano Norberto Milanič, Martin Safe, Martín D. Graph domination Total domination Rainbow domination 2-domination Integer domination Double domination Split graph Approximation algorithm Inapproximability Matemática Aplicada Matemática Pura Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina Fil: Grippo, Luciano Norberto. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Fil:Grippo, Luciano Norberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Safe, Martín M. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Fil: Brešar, Boštjan. University of Maribor. Faculty of Natural Sciences and Mathematics; Slovenia. Fil: Milanič, Martin. University of Primorska; Eslovenia. In this paper, we study the most basic domination invariants in graphs, in which number 2 is intrinsic part of their definitions. We classify them upon three criteria, two of which give the following previously studied invariants: the weak 2-domination number, γw2(G), the 2-domination number, γ2(G), the {2}-domination number, γ{2}(G), the double domination number, γ×2(G), the total{2}-domination number, γt{2}(G), and the total double domination number, γ t×2(G), where G is a graph in which the corresponding invariant is well defined. The third criterion yields rainbow versions of the mentioned six parameters, one of which has already been well studied, and three other give new interesting parameters. Together with a special, extensively studied Roman domination, γ R(G), and two classical parameters, the domination number, γ (G), and the total domination number, γt(G), we consider 13 domination invariants in graphs. In the main result of the paper we present sharp upper and lower bounds of each of the invariants in terms of every other invariant, a large majority of which are new results proven in this paper. As a consequence of the main theorem we obtain new complexity results regarding the existence of approximation algorithms for the studied invariants, matched with tight or almost tight inapproximability bounds, which hold even in the class of split graphs 2024-07-16T17:07:07Z 2024-07-16T17:07:07Z 2018 info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion Bonomo, F. et al. (1-2018). Domination parameters with number 2: interrelations and algorithmic consequences. Discrete Applied Mathematics, 235, 23-50. 0166-218X http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1588 eng http://dx.doi.org/10.1016/j.dam.2017.08.017 info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/4.0/ application/pdf Elsevier Science BV Discrete Applied Mathematics. (1-2018); 235: 23-50 https://linkinghub.elsevier.com/retrieve/pii/S0166218X17304031
institution Universidad Nacional de General Sarmiento
institution_str I-71
repository_str R-177
collection Repositorio Institucional Digital de Acceso Abierto (UNGS)
language Inglés
orig_language_str_mv eng
topic Graph domination
Total domination
Rainbow domination
2-domination
Integer domination
Double domination
Split graph
Approximation algorithm
Inapproximability
Matemática Aplicada
Matemática Pura
spellingShingle Graph domination
Total domination
Rainbow domination
2-domination
Integer domination
Double domination
Split graph
Approximation algorithm
Inapproximability
Matemática Aplicada
Matemática Pura
Bonomo, Flavia
Brešar, Boštjan
Grippo, Luciano Norberto
Milanič, Martin
Safe, Martín D.
Domination parameters with number 2 : interrelations and algorithmic consequences
topic_facet Graph domination
Total domination
Rainbow domination
2-domination
Integer domination
Double domination
Split graph
Approximation algorithm
Inapproximability
Matemática Aplicada
Matemática Pura
description Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
format Artículo
Artículo
publishedVersion
author Bonomo, Flavia
Brešar, Boštjan
Grippo, Luciano Norberto
Milanič, Martin
Safe, Martín D.
author_facet Bonomo, Flavia
Brešar, Boštjan
Grippo, Luciano Norberto
Milanič, Martin
Safe, Martín D.
author_sort Bonomo, Flavia
title Domination parameters with number 2 : interrelations and algorithmic consequences
title_short Domination parameters with number 2 : interrelations and algorithmic consequences
title_full Domination parameters with number 2 : interrelations and algorithmic consequences
title_fullStr Domination parameters with number 2 : interrelations and algorithmic consequences
title_full_unstemmed Domination parameters with number 2 : interrelations and algorithmic consequences
title_sort domination parameters with number 2 : interrelations and algorithmic consequences
publisher Elsevier Science BV
publishDate 2024
url http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1588
work_keys_str_mv AT bonomoflavia dominationparameterswithnumber2interrelationsandalgorithmicconsequences
AT bresarbostjan dominationparameterswithnumber2interrelationsandalgorithmicconsequences
AT grippolucianonorberto dominationparameterswithnumber2interrelationsandalgorithmicconsequences
AT milanicmartin dominationparameterswithnumber2interrelationsandalgorithmicconsequences
AT safemartind dominationparameterswithnumber2interrelationsandalgorithmicconsequences
_version_ 1817374902247751680