Smoke detection using simplified descriptors of video information
Automatic visual detection of smoke in confined or open spaces is overriding to issue early warnings that can save lives or prevent irreparable damage. While fire presents a range of characteristic colour, smoke does not present a readily apparent pattern. Changes its shape, does not contain clear e...
Autores principales: | , , , , |
---|---|
Formato: | Artículo acceptedVersion |
Lenguaje: | Inglés Inglés |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12272/8087 |
Aporte de: |
id |
I68-R174-20.500.12272-8087 |
---|---|
record_format |
dspace |
spelling |
I68-R174-20.500.12272-80872023-06-22T13:40:07Z Smoke detection using simplified descriptors of video information Monte, Gustavo Marasco, Damian Pastore, Juan Ignacio Liscovsky, Pablo Ballarin, Virginia —smoke detection; real time; embedded systems; video processing; image representation Automatic visual detection of smoke in confined or open spaces is overriding to issue early warnings that can save lives or prevent irreparable damage. While fire presents a range of characteristic colour, smoke does not present a readily apparent pattern. Changes its shape, does not contain clear edges, presents a chaotic behaviour and colour manifests from white to black, including all nuances. This paper presents an algorithm that efficiently pre-process a frame that extracts the main component of information, decreasing orders of magnitude the source size. From this new structure, algorithms based on the temporal and spatial change of subsets of the new structure are applied. Decision is based on fusion of weak classifiers. The algorithms are described and validated with experimental results of real-time detection for open and confined spaces, considering simplicity and efficiency of the proposed method suitable for embedded systems. Fil: Monte, Gustavo. Universidad Tecnológica Nacional. Facultad Regional Del Neuquen ; Argentina. Fil: Marasc, Damian. Universidad Tecnológica Nacional. Facultad Regional Del Neuquen ; Argentina. Fil: Liscovsky, Pablo. Universidad Tecnológica Nacional. Facultad Regional Del Neuquen ; Argentina. Fil: Ballarin, Virginia. Universidad Nacional de Mar del Plata. Facultad de Ingeniera; Argentina. Fil: Pastore, Juan Ignacio. Universidad Nacional de Mar del Plata. Facultad de Ingeniera; CONICET; Argentina. Peer Reviewed 2023-06-22T13:40:07Z 2023-06-22T13:40:07Z 2017-03-22 info:eu-repo/semantics/article acceptedVersion http://hdl.handle.net/20.500.12272/8087 101109 eng eng openAccess http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional creative commos pdf |
institution |
Universidad Tecnológica Nacional |
institution_str |
I-68 |
repository_str |
R-174 |
collection |
RIA - Repositorio Institucional Abierto (UTN) |
language |
Inglés Inglés |
topic |
—smoke detection; real time; embedded systems; video processing; image representation |
spellingShingle |
—smoke detection; real time; embedded systems; video processing; image representation Monte, Gustavo Marasco, Damian Pastore, Juan Ignacio Liscovsky, Pablo Ballarin, Virginia Smoke detection using simplified descriptors of video information |
topic_facet |
—smoke detection; real time; embedded systems; video processing; image representation |
description |
Automatic visual detection of smoke in confined or open spaces is overriding to issue early warnings that can save lives or prevent irreparable damage. While fire presents a range of characteristic colour, smoke does not present a readily apparent pattern. Changes its shape, does not contain clear edges, presents a chaotic behaviour and colour manifests from white to black, including all nuances. This paper presents an
algorithm that efficiently pre-process a frame that extracts the main component of information, decreasing orders of magnitude the source size. From this new structure, algorithms based on the temporal and spatial change of subsets of the new structure are applied. Decision is based on fusion of weak classifiers. The algorithms are described and validated with experimental results of real-time detection for open and
confined spaces, considering simplicity and efficiency of the proposed method suitable for embedded systems. |
format |
Artículo acceptedVersion |
author |
Monte, Gustavo Marasco, Damian Pastore, Juan Ignacio Liscovsky, Pablo Ballarin, Virginia |
author_facet |
Monte, Gustavo Marasco, Damian Pastore, Juan Ignacio Liscovsky, Pablo Ballarin, Virginia |
author_sort |
Monte, Gustavo |
title |
Smoke detection using simplified descriptors of video information |
title_short |
Smoke detection using simplified descriptors of video information |
title_full |
Smoke detection using simplified descriptors of video information |
title_fullStr |
Smoke detection using simplified descriptors of video information |
title_full_unstemmed |
Smoke detection using simplified descriptors of video information |
title_sort |
smoke detection using simplified descriptors of video information |
publishDate |
2023 |
url |
http://hdl.handle.net/20.500.12272/8087 |
work_keys_str_mv |
AT montegustavo smokedetectionusingsimplifieddescriptorsofvideoinformation AT marascodamian smokedetectionusingsimplifieddescriptorsofvideoinformation AT pastorejuanignacio smokedetectionusingsimplifieddescriptorsofvideoinformation AT liscovskypablo smokedetectionusingsimplifieddescriptorsofvideoinformation AT ballarinvirginia smokedetectionusingsimplifieddescriptorsofvideoinformation |
_version_ |
1769989305007079424 |