Stochastic model predictive control for tracking linear systems
This note presents a stochastic formulation of the model predictive control for tracking (MPCT), based on the results of the work of Lorenzen et al. The proposed controller ensures constraints satisfaction in probability, and maintains the main features of the MPCT, that are feasibility for any chan...
Guardado en:
| Autores principales: | , , , , |
|---|---|
| Formato: | Artículo publisherVersion |
| Lenguaje: | Inglés |
| Publicado: |
2021
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/20.500.12272/4923 https://doi.org/10.1002/oca.2501 |
| Aporte de: |
| id |
I68-R174-20.500.12272-4923 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Tecnológica Nacional |
| institution_str |
I-68 |
| repository_str |
R-174 |
| collection |
RIA - Repositorio Institucional Abierto (UTN) |
| language |
Inglés |
| topic |
MODEL PREDICTIVE CONTROL , PROBABILISTIC CONSTRAINTS , STOCHASTIC CONTROL , TRACKING |
| spellingShingle |
MODEL PREDICTIVE CONTROL , PROBABILISTIC CONSTRAINTS , STOCHASTIC CONTROL , TRACKING D' Jorge, Agustina Santoro, Bruno Anderson, Alejandro Luis González, Alejandro Hernán Ferramosca, Antonio Stochastic model predictive control for tracking linear systems |
| topic_facet |
MODEL PREDICTIVE CONTROL , PROBABILISTIC CONSTRAINTS , STOCHASTIC CONTROL , TRACKING |
| description |
This note presents a stochastic formulation of the model predictive control for tracking (MPCT), based on the results of the work of Lorenzen et al. The proposed controller ensures constraints satisfaction in probability, and maintains the main features of the MPCT, that are feasibility for any changing setpoints and enlarged domain of attraction, even larger than the one delivered by Lorenzen et al, thanks to the use of artificial references and relaxed terminal constraints. The asymptotic stability (in probability) of the minimal robust positively invariant set centered on the desired setpoint is guaranteed. Simulations on a DC-DC converter show the benefits and the properties of the proposal. |
| format |
Artículo publisherVersion |
| author |
D' Jorge, Agustina Santoro, Bruno Anderson, Alejandro Luis González, Alejandro Hernán Ferramosca, Antonio |
| author_facet |
D' Jorge, Agustina Santoro, Bruno Anderson, Alejandro Luis González, Alejandro Hernán Ferramosca, Antonio |
| author_sort |
D' Jorge, Agustina |
| title |
Stochastic model predictive control for tracking linear systems |
| title_short |
Stochastic model predictive control for tracking linear systems |
| title_full |
Stochastic model predictive control for tracking linear systems |
| title_fullStr |
Stochastic model predictive control for tracking linear systems |
| title_full_unstemmed |
Stochastic model predictive control for tracking linear systems |
| title_sort |
stochastic model predictive control for tracking linear systems |
| publishDate |
2021 |
| url |
http://hdl.handle.net/20.500.12272/4923 https://doi.org/10.1002/oca.2501 |
| work_keys_str_mv |
AT djorgeagustina stochasticmodelpredictivecontrolfortrackinglinearsystems AT santorobruno stochasticmodelpredictivecontrolfortrackinglinearsystems AT andersonalejandroluis stochasticmodelpredictivecontrolfortrackinglinearsystems AT gonzalezalejandrohernan stochasticmodelpredictivecontrolfortrackinglinearsystems AT ferramoscaantonio stochasticmodelpredictivecontrolfortrackinglinearsystems |
| bdutipo_str |
Repositorios |
| _version_ |
1764820552279654400 |